Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Rep ; 38(12): 110556, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35320722

ABSTRACT

Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Stem and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Cortex , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Motor Cortex/metabolism , Motor Neurons/metabolism , Neurodegenerative Diseases/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
2.
Cell Rep ; 19(3): 655-667, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423326

ABSTRACT

Translational profiling methodologies enable the systematic characterization of cell types in complex tissues, such as the mammalian brain, where neuronal isolation is exceptionally difficult. Here, we report a versatile strategy for profiling CNS cell types in a spatiotemporally restricted fashion by engineering a Cre-dependent adeno-associated virus expressing an EGFP-tagged ribosomal protein (AAV-FLEX-EGFPL10a) to access translating mRNAs by translating ribosome affinity purification (TRAP). We demonstrate the utility of this AAV to target a variety of genetically and anatomically defined neural populations expressing Cre recombinase and illustrate the ability of this viral TRAP (vTRAP) approach to recapitulate the molecular profiles obtained by bacTRAP in corticothalamic neurons across multiple serotypes. Furthermore, spatially restricting adeno-associated virus (AAV) injections enabled the elucidation of regional differences in gene expression within this cell type. Altogether, these results establish the broad applicability of the vTRAP strategy for the molecular dissection of any CNS or peripheral cell type that can be engineered to express Cre.


Subject(s)
Chromatography, Affinity/methods , Protein Biosynthesis , Ribosomes/metabolism , Viruses/metabolism , Animals , Biomarkers/metabolism , Dependovirus/metabolism , Female , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Male , Melanins/metabolism , Mice , Neurons/metabolism , Pituitary Hormones/metabolism , Reproducibility of Results , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL