Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
PLoS Genet ; 18(11): e1010477, 2022 11.
Article in English | MEDLINE | ID: mdl-36350884

ABSTRACT

Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Mice , Animals , Charcot-Marie-Tooth Disease/genetics , Myelin Sheath/genetics , Myelin Sheath/metabolism , Axons/metabolism , Neuroglia , Mice, Knockout , Disease Models, Animal , Communication
2.
Hum Mol Genet ; 28(8): 1260-1273, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30535360

ABSTRACT

Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we improved the myelination defects by early overexpression of NRG1 type III. Surprisingly, the improvement was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 and oligodendrocyte myelin glycoprotein. We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial NRG1 type III signaling has beneficial effects and improves myelination defects during development in a model of CHN.


Subject(s)
Myelin Sheath/metabolism , Neuregulin-1/genetics , Neuregulin-1/physiology , Action Potentials , Animals , Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Gene Knock-In Techniques/methods , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/genetics , Neuregulin-1/metabolism , Neuroglia/metabolism , Neurons/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism , Signal Transduction/physiology
3.
Proc Natl Acad Sci U S A ; 115(6): E1319-E1328, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29351992

ABSTRACT

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in xenobiotic metabolism. Plexiform neurofibromas (PNFs) can transform into malignant peripheral nerve sheath tumors (MPNSTs) that are resistant to existing therapies. These tumors are primarily composed of Schwann cells. In addition to neurofibromatosis type 1 (NF1) gene inactivation, further genetic lesions are required for malignant transformation. We have quantified the mRNA expression levels of AHR and its associated genes in 38 human samples. We report that AHR and the biosynthetic enzymes of its endogenous ligand are overexpressed in human biopsies of PNFs and MPNSTs. We also detect a strong nuclear AHR staining in MPNSTs. The inhibition of AHR by siRNA or antagonists, CH-223191 and trimethoxyflavone, induces apoptosis in human MPNST cells. Since AHR dysregulation is observed in these tumors, we investigate AHR involvement in Schwann cell physiology. Hence, we studied the role of AHR in myelin structure and myelin gene regulation in Ahr-/- mice during myelin development. AHR ablation leads to locomotion defects and provokes thinner myelin sheaths around the axons. We observe a dysregulation of myelin gene expression and myelin developmental markers in Ahr-/- mice. Interestingly, AHR does not directly bind to myelin gene promoters. The inhibition of AHR in vitro and in vivo increased ß-catenin levels and stimulated the binding of ß-catenin on myelin gene promoters. Taken together, our findings reveal an endogenous role of AHR in peripheral myelination and in peripheral nerve sheath tumors. Finally, we suggest a potential therapeutic approach by targeting AHR in nerve tumors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Myelin Sheath/pathology , Nerve Sheath Neoplasms/pathology , Receptors, Aryl Hydrocarbon/physiology , Animals , Apoptosis , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Signal Transduction
4.
Proc Natl Acad Sci U S A ; 112(24): 7587-92, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26023184

ABSTRACT

The identification of new pathways governing myelination provides innovative avenues for remyelination. Liver X receptors (LXRs) α and ß are nuclear receptors activated by oxysterols that originated from the oxidation of cholesterol. They are crucial for cholesterol homeostasis, a major lipid constituent of myelin sheaths that are formed by oligodendrocytes. However, the role of LXRs in myelin generation and maintenance is poorly understood. Here, we show that LXRs are involved in myelination and remyelination processes. LXRs and their ligands are present in oligodendrocytes. We found that mice invalidated for LXRs exhibit altered motor coordination and spatial learning, thinner myelin sheaths, and reduced myelin gene expression. Conversely, activation of LXRs by either 25-hydroxycholesterol or synthetic TO901317 stimulates myelin gene expression at the promoter, mRNA, and protein levels, directly implicating LXRα/ß in the transcriptional control of myelin gene expression. Interestingly, activation of LXRs also promotes oligodendroglial cell maturation and remyelination after lysolecithin-induced demyelination of organotypic cerebellar slice cultures. Together, our findings represent a conceptual advance in the transcriptional control of myelin gene expression and strongly support a new role of LXRs as positive modulators in central (re)myelination processes.


Subject(s)
Cerebellum/physiology , Myelin Sheath/physiology , Orphan Nuclear Receptors/physiology , Animals , Cell Differentiation/drug effects , Cerebellum/cytology , Cerebellum/drug effects , Cholesterol/metabolism , Gene Expression Regulation/drug effects , Homeostasis , Hydrocarbons, Fluorinated/pharmacology , Hydroxycholesterols/pharmacology , Liver X Receptors , Male , Mice , Mice, Knockout , Myelin Sheath/drug effects , Myelin Sheath/genetics , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Organ Culture Techniques , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/deficiency , Promoter Regions, Genetic , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spatial Learning/drug effects , Spatial Learning/physiology , Sulfonamides/pharmacology
7.
Cell Mol Life Sci ; 71(7): 1123-48, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23749084

ABSTRACT

Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3ß, a central enzyme of the Wnt/ß-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.


Subject(s)
Central Nervous System Depressants/therapeutic use , Lithium/therapeutic use , Nervous System Diseases/metabolism , Wnt Signaling Pathway , Cell Polarity , Central Nervous System Depressants/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/physiology , Glycogen Synthase Kinase 3 beta , Humans , Lithium/metabolism , Models, Biological , Nervous System/metabolism , Synaptic Transmission/drug effects , Wnt Proteins/metabolism , beta Catenin/metabolism , beta Catenin/physiology
8.
Proc Natl Acad Sci U S A ; 109(10): 3973-8, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22355115

ABSTRACT

Glycogen synthase kinase 3ß (GSK3ß) inhibitors, especially the mood stabilizer lithium chloride, are also used as neuroprotective or anti-inflammatory agents. We studied the influence of LiCl on the remyelination of peripheral nerves. We showed that the treatment of adult mice with LiCl after facial nerve crush injury stimulated the expression of myelin genes, restored the myelin structure, and accelerated the recovery of whisker movements. LiCl treatment also promoted remyelination of the sciatic nerve after crush. We also demonstrated that peripheral myelin gene MPZ and PMP22 promoter activities, transcripts, and protein levels are stimulated by GSK3ß inhibitors (LiCl and SB216763) in Schwann cells as well as in sciatic and facial nerves. LiCl exerts its action in Schwann cells by increasing the amount of ß-catenin and provoking its nuclear localization. We showed by ChIP experiments that LiCl treatment drives ß-catenin to bind to T-cell factor/lymphoid-enhancer factor response elements identified in myelin genes. Taken together, our findings open perspectives in the treatment of nerve demyelination by administering GSK3ß inhibitors such as lithium.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Lithium Chloride/pharmacology , Myelin Sheath/chemistry , Peripheral Nerves/metabolism , Animals , Cell Nucleus/metabolism , Glycogen Synthase Kinase 3 beta , Male , Mice , Mice, Inbred C57BL , Myelin P0 Protein/metabolism , Peripheral Nerves/drug effects , Placebos , Proto-Oncogene Proteins c-akt/metabolism , Schwann Cells/metabolism , Sciatic Nerve/injuries , Signal Transduction
9.
J Neurosci ; 31(26): 9620-9, 2011 Jun 29.
Article in English | MEDLINE | ID: mdl-21715627

ABSTRACT

Oxysterols are reactive molecules generated from the oxidation of cholesterol. Their implication in cholesterol homeostasis and in the progression of neurodegenerative disorders is well known, but few data are available for their functions in the peripheral nervous system. Our aim was to study the influence of oxysterols on myelin gene expression and myelin sheath formation in peripheral nerves. We show by gas chromatography/mass spectrometry that Schwann cells and sciatic nerves contain 24(S)-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol and that they express their biosynthetic enzymes and receptors (liver X receptors LXRα and LXRß). We demonstrate that oxysterols inhibit peripheral myelin gene expression [myelin protein zero (MPZ) and peripheral myelin protein-22 (PMP22)] in a Schwann cell line. This downregulation is mediated by either LXRα or LXRß, depending on the promoter context, as suggested by siRNA strategy and chromatin immunoprecipitation assays in Schwann cells and in the sciatic nerve of LXR knock-out mice. Importantly, the knock-out of LXR in mice results in thinner myelin sheaths surrounding the axons. Oxysterols repress myelin genes via two mechanisms: by binding of LXRs to myelin gene promoters and by inhibiting the Wnt/ß-catenin pathway that is crucial for the expression of myelin genes. The Wnt signaling components (Disheveled, TCF/LEF, ß-catenin) are strongly repressed by oxysterols. Furthermore, the recruitment of ß-catenin at the levels of the MPZ and PMP22 promoters is decreased. Our data reveal new endogenous mechanisms for the negative regulation of myelin gene expression, highlight the importance of oxysterols and LXR in peripheral nerve myelination, and open new perspectives of treating demyelinating diseases with LXR agonists.


Subject(s)
Hydroxycholesterols/metabolism , Orphan Nuclear Receptors/metabolism , Schwann Cells/metabolism , Sciatic Nerve/metabolism , Signal Transduction/physiology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Blotting, Western , Chromatin Immunoprecipitation , Gas Chromatography-Mass Spectrometry , Liver X Receptors , Male , Mice , Myelin P0 Protein/genetics , Myelin P0 Protein/metabolism , Myelin Proteins/genetics , Myelin Proteins/metabolism , Myelin Sheath/genetics , Myelin Sheath/metabolism , Orphan Nuclear Receptors/genetics , Reverse Transcriptase Polymerase Chain Reaction , Wnt Proteins/genetics , beta Catenin/genetics
10.
J Steroid Biochem Mol Biol ; 169: 61-68, 2017 05.
Article in English | MEDLINE | ID: mdl-26940358

ABSTRACT

Liver X Receptors (LXRs) α and ß are nuclear receptors able to bind oxidative forms of cholesterol. They play important roles in the central nervous system (CNS), through their implication in a large variety of physiological and pathological processes among which modulation of cholesterol homeostasis and inflammation. Besides, we recently revealed their crucial role in myelination and remyelination in the cerebellum. Given the pleiotropic effects of such receptors on CNS functioning, we studied here the influence of LXRs on myelin gene mRNA accumulation in the major myelinated regions of the CNS in vivo. We show that both LXR isoforms differentially affect mRNA amount of myelin genes (PLP and MBP) in highly myelinated structures such as spinal cord, corpus callosum, optic nerve and cerebellum. In the adult, LXR activation by the synthetic agonist TO901317 significantly increases myelin gene mRNA amount in the cerebellum but not in the other regions studied. Invalidation of the sole LXRß isoform leads to decreased PLP and MBP mRNA levels in all the structures except the spinal cord, while the knock out of both isoforms (LXR dKO) decreases myelin gene mRNA amounts in all the regions tested except the corpus callosum. Interestingly, during myelination process (post-natal day 21), both cerebellum and optic nerve display a decrease in myelin gene mRNA levels in LXR dKO mice. Concomitantly, PLP and MBP mRNA accumulation in the spinal cord is increased. Relative expression level of LXR isoforms could account for the differential modulation of myelin gene expression in the CNS. Altogether our results suggest that, within the CNS, each LXR isoform differentially influences myelin gene mRNA levels in a region- and age-dependant manner, participating in the fine regulation of myelin gene expression.


Subject(s)
Liver X Receptors/metabolism , Myelin Sheath/metabolism , Animals , Central Nervous System/metabolism , Cerebellum/growth & development , Cerebellum/metabolism , Corpus Callosum/growth & development , Corpus Callosum/metabolism , Gene Expression Regulation, Developmental , Hydrocarbons, Fluorinated/pharmacology , Male , Mice , Mice, Knockout , Myelin Sheath/genetics , Oligodendroglia/cytology , Optic Nerve/growth & development , Optic Nerve/metabolism , Protein Isoforms , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Spinal Cord/growth & development , Spinal Cord/metabolism , Sulfonamides/pharmacology
12.
Clin Cancer Res ; 20(2): 358-71, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24218515

ABSTRACT

PURPOSE: The hallmark of neurofibromatosis type 1 (NF1) is the onset of dermal or plexiform neurofibromas, mainly composed of Schwann cells. Plexiform neurofibromas can transform into malignant peripheral nerve sheath tumors (MPNST) that are resistant to therapies. EXPERIMENTAL DESIGN: The aim of this study was to identify an additional pathway in the NF1 tumorigenesis. We focused our work on Wnt signaling that is highly implicated in cancer, mainly in regulating the proliferation of cancer stem cells. We quantified mRNAs of 89 Wnt pathway genes in 57 NF1-associated tumors including dermal and plexiform neurofibromas and MPNSTs. Expression of two major stem cell marker genes and five major epithelial-mesenchymal transition marker genes was also assessed. The expression of significantly deregulated Wnt genes was then studied in normal human Schwann cells, fibroblasts, endothelial cells, and mast cells and in seven MPNST cell lines. RESULTS: The expression of nine Wnt genes was significantly deregulated in plexiform neurofibromas in comparison with dermal neurofibromas. Twenty Wnt genes showed altered expression in MPNST biopsies and cell lines. Immunohistochemical studies confirmed the Wnt pathway activation in NF1-associated MPNSTs. We then confirmed that the knockdown of NF1 in Schwann cells but not in epithelial cells provoked the activation of Wnt pathway by functional transfection assays. Furthermore, we showed that the protein expression of active ß-catenin was increased in NF1-silenced cell lines. Wnt pathway activation was strongly associated to both cancer stem cell reservoir and Schwann-mesenchymal transition. CONCLUSION: We highlighted the implication of Wnt pathway in NF1-associated tumorigenesis.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Wnt Signaling Pathway , Biomarkers/metabolism , Cell Line, Tumor , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Fibroblasts/metabolism , Gene Expression , Gene Expression Profiling , Humans , Immunophenotyping , Mast Cells/metabolism , Neurofibroma/genetics , Neurofibroma/metabolism , Neurofibroma/pathology , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , RNA, Messenger/genetics , Reproducibility of Results , Schwann Cells/metabolism , Stem Cells/metabolism
13.
Biochem Pharmacol ; 86(1): 106-14, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23500534

ABSTRACT

Oxysterols are reactive molecules generated by the oxidation of cholesterol. Their implication in cholesterol homeostasis and in the progression of neurodegenerative disorders is well known. Here, we study the role of oxysterols and their nuclear receptors, Liver X Receptor (LXR), in myelinating glial cells of the central and peripheral nervous systems. First, we show by gas chromatography/mass spectrometry that the brain, sciatic nerve, oligodendrocytes and Schwann cells contain 24(S)-hydroxycholesterol, 25-hydroxycholesterol (25-OH) and 27-hydroxycholesterol, and they express their biosynthetic enzymes. We observed a differential effect of 25-OH toward myelin genes (MPZ and PMP22) expression: 25-OH inhibits MPZ and PMP22 in Schwann cell line but not in oligodendrocyte cell line. Importantly, the invalidation of LXR in mice enhanced MPZ and PMP22 transcripts expression in the sciatic nerve, but inhibited their expression in the brain. We have previously reported that Wnt signaling pathway is crucial for myelin gene expression. We show that the transcripts of Wnt components (Disheveled, TCF3, beta-catenin) are strongly repressed by oxysterols in Schwann cells but are activated in oligodendrocytes. Furthermore, we show by immunofluorescent labeling that beta-catenin is re-localized on the level of the Golgi apparatus of Schwann cells after incubation with 25-OH. We did not observe such an unusual localization of beta-catenin in oligodendrocytes. Our findings reveal a complex cross-talk between LXR and Wnt/beta-catenin pathway in myelinating glial cells.


Subject(s)
Oligodendroglia/metabolism , Orphan Nuclear Receptors/metabolism , Schwann Cells/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Brain/metabolism , Cell Line , Gene Expression Regulation , Hydroxycholesterols/pharmacology , Liver X Receptors , Mice , Mice, Knockout , Myelin P0 Protein/genetics , Myelin P0 Protein/metabolism , Myelin Proteins/genetics , Myelin Proteins/metabolism , Myelin Sheath/genetics , Myelin Sheath/metabolism , Orphan Nuclear Receptors/genetics , Sciatic Nerve/metabolism , Sterols/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL