Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26593718

ABSTRACT

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Subject(s)
DNA Damage , DNA Helicases/metabolism , DNA Replication , Fanconi Anemia Complementation Group Proteins/metabolism , Genomic Instability , Nucleic Acid Heteroduplexes/metabolism , Animals , DNA Helicases/genetics , Fanconi Anemia Complementation Group Proteins/genetics , HeLa Cells , Humans , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Mice , Mice, Knockout , Mutation , Nucleic Acid Heteroduplexes/genetics
2.
J Cell Mol Med ; 25(2): 784-800, 2021 01.
Article in English | MEDLINE | ID: mdl-33274592

ABSTRACT

With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , STAT3 Transcription Factor/metabolism , Animals , Benzofurans/pharmacology , Blotting, Western , Cell Line, Tumor , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , HCT116 Cells , Humans , Immunohistochemistry , Mice , Naphthoquinones/pharmacology , Nitriles , Pancreatic Neoplasms/genetics , Pyrazoles/pharmacology , Pyrimidines , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/genetics , Tumor Microenvironment/drug effects
3.
Br J Cancer ; 124(9): 1566-1580, 2021 04.
Article in English | MEDLINE | ID: mdl-33658640

ABSTRACT

BACKGROUND: MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS: We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS: MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS: Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.


Subject(s)
Biomarkers, Tumor/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Gene Expression Regulation, Neoplastic , Neurofibrosarcoma/pathology , STAT3 Transcription Factor/metabolism , Adolescent , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Female , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neurofibrosarcoma/genetics , Neurofibrosarcoma/metabolism , Prognosis , STAT3 Transcription Factor/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Nucleic Acids Res ; 47(18): e111, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31372654

ABSTRACT

A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA/genetics , Single-Cell Analysis/methods , Software , Algorithms , Gene Expression Profiling , Gene Expression Regulation/genetics , Models, Statistical , Sequence Analysis, RNA/methods
5.
J Pharmacol Exp Ther ; 367(1): 108-118, 2018 10.
Article in English | MEDLINE | ID: mdl-30076264

ABSTRACT

Ocular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for nuclear factor (NF)-κB and other proangiogenic transcription factors. An existing inhibitor of Ref-1's function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared with APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 ĀµM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a; GI50 APX2009: 26 ĀµM, APX2014: 5.0 ĀµM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid-nanomolar concentrations compared with control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets. Ex vivo, APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations, respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared with vehicle (P < 0.0001, ANOVA with Dunnett's post-hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesis in vitro and ex vivo, and APX2009 is an effective systemic therapy for choroidal neovascularization in vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Neovascularization, Pathologic/drug therapy , Retina/drug effects , Small Molecule Libraries/pharmacology , Animals , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Humans , Macaca , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Neovascularization, Pathologic/metabolism , Retina/metabolism
7.
Mol Oncol ; 18(1): 113-135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37971174

ABSTRACT

Pancreatic ductal adenocarcinomaĀ (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Fibrinolysin , Pancreatic Neoplasms/pathology , Plasminogen
8.
Biochem Biophys Res Commun ; 419(2): 350-5, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22342720

ABSTRACT

The thioredoxin system is a key cellular antioxidant system and is highly expressed in cancer cells, especially in more aggressive and therapeutic resistant tumors. We analysed the expression of the thioredoxin system in the MDA-MB-231 breast cancer cell line under conditions mimicking the tumor oxygen microenvironment. We grew breast cancer cells in either prolonged hypoxia or hypoxia followed by various lengths of reoxygenation and in each case cells were cultured with or without a hypoxic cycling preconditioning (PC) phase preceding the hypoxic growth. Flow cytometry-based assays were used to measure reactive oxygen species (ROS) levels. Cells grown in hypoxia showed a significant decrease in ROS levels compared to normoxic cells, while a significant increase in ROS levels over normoxic cells was observed after 4 h of reoxygenation. The PC pre-treatment did not have a significant effect on ROS levels. Thioredoxin levels were also highest after 4 h of reoxygenation, however cells subjected to PC pre-treatment displayed even higher thioredoxin levels. The high level of intracellular thioredoxin was also reflected on the cell surface. Reporter assays showed that activity of the thioredoxin and thioredoxin reductase gene promoters was also highest in the reoxygenation phase, although PC pre-treatment did not result in a significant increase over non-PC treated cells. The use of a dominant negative Nrf-2 negated the increased thioredoxin promoter activity during reoxygenation. This data suggests that the high levels of thioredoxin observed in tumors may arise due to cycling between hypoxia and reoxygenation.


Subject(s)
Breast Neoplasms/metabolism , Oxygen/metabolism , Thioredoxins/metabolism , Breast Neoplasms/genetics , Cell Hypoxia , Cell Line, Tumor , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Promoter Regions, Genetic , Reactive Oxygen Species/metabolism , Thioredoxins/analysis , Thioredoxins/genetics , Up-Regulation
9.
J Exp Clin Cancer Res ; 40(1): 251, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376225

ABSTRACT

BACKGROUND: Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. METHODS: scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1's role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. RESULTS: Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate ofĀ NADP + consuming reactions was observed suggesting the less availability ofĀ NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. CONCLUSION: Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Pancreatic Neoplasms/genetics , Animals , Humans , Mice , Pancreatic Neoplasms/pathology , Transfection
10.
J Med Chem ; 62(5): 2651-2665, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30776234

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, incurable cancer with a 20% 1 year survival rate. While standard-of-care therapy can prolong life in a small fraction of cases, PDAC is inherently resistant to current treatments, and novel therapies are urgently required. Histone deacetylase (HDAC) inhibitors are effective in killing pancreatic cancer cells in in vitro PDAC studies, and although there are a few clinical studies investigating combination therapy including HDAC inhibitors, no HDAC drug or combination therapy with an HDAC drug has been approved for the treatment of PDAC. We developed an inhibitor of HDACs, AES-135, that exhibits nanomolar inhibitory activity against HDAC3, HDAC6, and HDAC11 in biochemical assays. In a three-dimensional coculture model, AES-135 kills low-passage patient-derived tumor spheroids selectively over surrounding cancer-associated fibroblasts and has excellent pharmacokinetic properties in vivo. In an orthotopic murine model of pancreatic cancer, AES-135 prolongs survival significantly, therefore representing a candidate for further preclinical testing.


Subject(s)
Benzamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Hydrocarbons, Fluorinated/pharmacology , Hydroxamic Acids/chemistry , Pancreatic Neoplasms/drug therapy , Sulfonamides/pharmacology , Animals , Apoptosis/drug effects , Benzamides/chemistry , Benzamides/pharmacokinetics , Benzamides/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Disease Models, Animal , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/pharmacokinetics , Hydrocarbons, Fluorinated/therapeutic use , Mice , Pancreatic Neoplasms/pathology , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
11.
Sci Rep ; 8(1): 13759, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214007

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has reactive stroma that promotes tumor signaling, fibrosis, inflammation, and hypoxia, which activates HIF-1α to increase tumor cell metastasis and therapeutic resistance. Carbonic anhydrase IX (CA9) stabilizes intracellular pH following induction by HIF-1α. Redox effector factor-1 (APE1/Ref-1) is a multifunctional protein with redox signaling activity that converts certain oxidized transcription factors to a reduced state, enabling them to upregulate tumor-promoting genes. Our studies evaluate PDAC hypoxia responses and APE1/Ref-1 redox signaling contributions to HIF-1α-mediated CA9 transcription. Our previous studies implicated this pathway in PDAC cell survival under hypoxia. We expand those studies, comparing drug responses using patient-derived PDAC cells displaying differential hypoxic responses in 3D spheroid tumor-stroma models to characterize second generation APE1/Ref-1 redox signaling and CA9 inhibitors. Our data demonstrates that HIF-1α-mediated CA9 induction differs between patient-derived PDAC cells and that APE1/Ref-1 redox inhibition attenuates this induction by decreasing hypoxia-induced HIF-1 DNA binding. Dual-targeting of APE1/Ref-1 and CA9 in 3D spheroids demonstrated that this combination effectively kills PDAC tumor cells displaying drastically different levels of CA9. New APE1/Ref-1 and CA9 inhibitors were significantly more potent alone and in combination, highlighting the potential of combination therapy targeting the APE1-Ref-1 signaling axis with significant clinical potential.


Subject(s)
Antigens, Neoplasm/genetics , Carbonic Anhydrase IX/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Pancreatic Neoplasms/drug therapy , Carbonic Anhydrase IX/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/genetics , Humans , Pancreatic Neoplasms/genetics , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Transcription, Genetic/drug effects
12.
Article in English | MEDLINE | ID: mdl-28825044

ABSTRACT

Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.

13.
Mol Oncol ; 11(12): 1711-1732, 2017 12.
Article in English | MEDLINE | ID: mdl-28922540

ABSTRACT

Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1-knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA sequencing to identify differentially expressed genes (DEGs) in relation to APE1 protein levels within the cell. Using a straightforward yet novel statistical design, we identified 2837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mechanistic target of Rapamycin pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the DEGs along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveals particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox-specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor subtype specificity. These findings will allow for hypothesis-driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer treatments.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Sequence Analysis, RNA , Single-Cell Analysis
14.
Cell Rep ; 18(3): 611-623, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27986592

ABSTRACT

Activation of the main DNA interstrand crosslink repair pathway in higher eukaryotes requires mono-ubiquitination of FANCI and FANCD2 by FANCL, the E3 ligase subunit of the Fanconi anemia core complex. FANCI and FANCD2 form a stable complex; however, the molecular basis of their ubiquitination is ill defined. FANCD2 mono-ubiquitination by FANCL is stimulated by the presence of the FANCB and FAAP100 core complex components, through an unknown mechanism. How FANCI mono-ubiquitination is achieved remains unclear. Here, we use structural electron microscopy, combined with crosslink-coupled mass spectrometry, to find that FANCB, FANCL, and FAAP100 form a dimer of trimers, containing two FANCL molecules that are ideally poised to target both FANCI and FANCD2 for mono-ubiquitination. The FANCC-FANCE-FANCF subunits bridge between FANCB-FANCL-FAAP100 and the FANCI-FANCD2 substrate. A transient interaction with FANCC-FANCE-FANCF alters the FANCI-FANCD2 configuration, stabilizing the dimerization interface. Our data provide a model to explain how equivalent mono-ubiquitination of FANCI and FANCD2 occurs.


Subject(s)
Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dimerization , Fanconi Anemia Complementation Group D2 Protein/chemistry , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group Proteins/chemistry , Fanconi Anemia Complementation Group Proteins/genetics , Humans , Mass Spectrometry , Microscopy, Electron , Protein Multimerization , Protein Structure, Tertiary , Substrate Specificity , Ubiquitination
15.
Redox Biol ; 8: 68-78, 2016 08.
Article in English | MEDLINE | ID: mdl-26760912

ABSTRACT

Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration.


Subject(s)
Breast Neoplasms/genetics , Thioredoxin Reductase 1/genetics , Thioredoxins/genetics , Auranofin/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation , Cell Survival , Extracellular Space/metabolism , Female , Gene Expression , Gene Expression Profiling , Humans , Oxidation-Reduction , Prognosis , Reactive Oxygen Species/metabolism , Thioredoxin Reductase 1/metabolism , Thioredoxins/pharmacology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL