Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730859

ABSTRACT

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Subject(s)
Genes, Modifier , Mitochondria/genetics , Mitochondria/pathology , Autoantigens/metabolism , Cell Death/drug effects , Cytosol/drug effects , Cytosol/metabolism , Electron Transport Complex I/metabolism , Epistasis, Genetic/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Genome , Glutathione Peroxidase/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Humans , K562 Cells , Mitochondria/drug effects , Oligomycins/toxicity , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Pentose Phosphate Pathway/drug effects , Pentose Phosphate Pathway/genetics , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , SS-B Antigen
2.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37995687

ABSTRACT

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Subject(s)
Endogenous Retroviruses , Endogenous Retroviruses/genetics , RNA, Nuclear , Epigenesis, Genetic , Heterochromatin , Gene Expression
3.
Nature ; 633(8028): 189-197, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39143206

ABSTRACT

Fasting is associated with a range of health benefits1-6. How fasting signals elicit changes in the proteome to establish metabolic programmes remains poorly understood. Here we show that hepatocytes selectively remodel the translatome while global translation is paradoxically downregulated during fasting7,8. We discover that phosphorylation of eukaryotic translation initiation factor 4E (P-eIF4E) is induced during fasting. We show that P-eIF4E is responsible for controlling the translation of genes involved in lipid catabolism and the production of ketone bodies. Inhibiting P-eIF4E impairs ketogenesis in response to fasting and a ketogenic diet. P-eIF4E regulates those messenger RNAs through a specific translation regulatory element within their 5' untranslated regions (5' UTRs). Our findings reveal a new signalling property of fatty acids, which are elevated during fasting. We found that fatty acids bind and induce AMP-activated protein kinase (AMPK) kinase activity that in turn enhances the phosphorylation of MAP kinase-interacting protein kinase (MNK), the kinase that phosphorylates eIF4E. The AMPK-MNK-eIF4E axis controls ketogenesis, revealing a new lipid-mediated kinase signalling pathway that links ketogenesis to translation control. Certain types of cancer use ketone bodies as an energy source9,10 that may rely on P-eIF4E. Our findings reveal that on a ketogenic diet, treatment with eFT508 (also known as tomivosertib; a P-eIF4E inhibitor) restrains pancreatic tumour growth. Thus, our findings unveil a new fatty acid-induced signalling pathway that activates selective translation, which underlies ketogenesis and provides a tailored diet intervention therapy for cancer.


Subject(s)
AMP-Activated Protein Kinases , Carcinogenesis , Eukaryotic Initiation Factor-4E , Fasting , Protein Biosynthesis , Animals , Mice , Eukaryotic Initiation Factor-4E/metabolism , Phosphorylation , Male , Carcinogenesis/genetics , Carcinogenesis/metabolism , Humans , AMP-Activated Protein Kinases/metabolism , Fatty Acids/metabolism , Ketone Bodies/metabolism , Diet, Ketogenic , Hepatocytes/metabolism , Signal Transduction , Lipid Metabolism , Female
4.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37993715

ABSTRACT

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Oleic Acids , Animals , Cattle , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dairy Products , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/therapeutic use , Milk/chemistry , Neoplasms/diet therapy , Neoplasms/immunology , Oleic Acids/pharmacology , Oleic Acids/therapeutic use , Red Meat , Sheep
5.
Mol Cell ; 81(9): 1905-1919.e12, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33852893

ABSTRACT

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Subject(s)
Glycolysis , Oxidative Phosphorylation , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Glutamic Acid/metabolism , Glycogen/metabolism , Glycolysis/genetics , HEK293 Cells , HeLa Cells , Humans , K562 Cells , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Phosphofructokinase-1, Muscle Type/genetics , Phosphofructokinase-1, Muscle Type/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics
6.
Nat Immunol ; 17(6): 656-65, 2016 06.
Article in English | MEDLINE | ID: mdl-27043409

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.


Subject(s)
Arginase/metabolism , Lymphocytes/physiology , Pneumonia/immunology , Animals , Arginase/genetics , Cell Proliferation/genetics , Cells, Cultured , Cytokines/metabolism , Glycolysis/genetics , Humans , Immunity, Innate , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Polyamines/metabolism , Th2 Cells/immunology
7.
Cell ; 153(3): 707-20, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23622250

ABSTRACT

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Gene Regulatory Networks , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Animals , Bayes Theorem , Brain/pathology , Humans , Membrane Proteins/metabolism , Mice , Microglia/metabolism
8.
Nature ; 583(7814): 122-126, 2020 07.
Article in English | MEDLINE | ID: mdl-32461692

ABSTRACT

The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.


Subject(s)
Liver/metabolism , NAD/metabolism , Stress, Physiological , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytosol/metabolism , Disease Models, Animal , Fibroblast Growth Factors/blood , Genetic Variation , Glucose Tolerance Test , Humans , Insulin Resistance , Levilactobacillus brevis/enzymology , Levilactobacillus brevis/genetics , Male , Mice , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction , Triglycerides/blood
9.
N Engl J Med ; 387(15): 1395-1403, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36239646

ABSTRACT

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the ß subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Subject(s)
Mitochondrial Diseases , Mitochondrial Proton-Translocating ATPases , Oxidative Phosphorylation , Oxygen Consumption , Humans , Male , Adenosine Triphosphate/metabolism , Diseases in Twins/genetics , Diseases in Twins/metabolism , Fibroblasts/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/congenital , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mutation , Oxygen Consumption/genetics , Oxygen Consumption/physiology , Twins, Monozygotic/genetics
10.
Ann Surg Oncol ; 31(3): 1898-1905, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37968411

ABSTRACT

OBJECTIVE: Postoperative pancreatic fistula is a potentially devastating complication after pancreatoduodenectomy (PD). The purpose of this study was to identify features on preoperative computed tomography (CT) imaging that correlate with an increased risk of postoperative pancreatic fistula (POPF). METHODS: Patients who underwent PD at our high-volume pancreatic surgery center from 2019 to 2021 were included if CT imaging was available within 8 weeks of surgical intervention. Pancreatic neck thickness (PNT), abdominal wall thickness (AWT), and intra-abdominal distance from pancreas to peritoneum (PTP) were measured by two board-certified radiologists who were blinded to the clinical outcomes. Radiographic measurements, as well as preoperative patient characteristics and intraoperative data, were assessed with univariate and multivariable analysis (MVA) to determine risk for clinically relevant POPF (CR-POPF, grades B and C). RESULTS: A total of 204 patients met inclusion criteria. Median PTP was 5.8 cm, AWT 1.9 cm, and PNT 1.3 cm. CR-POPF occurred in 33 of 204 (16.2%) patients. MVA revealed PTP > 5.8 cm (odds ratio [OR] 2.86, p = 0.023), PNT > 1.3 cm (OR 2.43, p = 0.047), soft pancreas consistency (OR 3.47, p = 0.012), and pancreatic duct size ≤ 3.0 mm (OR 4.55, p = 0.01) as independent risk factors for CR-POPF after PD. AWT and obesity were not associated with increased risk of CR-POPF. Patients with PTP > 5.8 cm or PNT > 1.3 cm were significantly more likely to suffer a major complication after PD (39.6% vs. 22.3% and 40% vs. 22.1%, p < 0.008). CONCLUSIONS: Patients with a thick pancreatic neck and increased intra-abdominal girth have a heightened risk of CR-POPF after pancreatoduodenectomy, and they experience more serious postoperative complications. We defined a simple CT scan-based measurement tool to identify patients at increased risk of CR-POPF.


Subject(s)
Pancreatic Fistula , Pancreaticoduodenectomy , Humans , Pancreatic Fistula/etiology , Pancreaticoduodenectomy/adverse effects , Pancreas/surgery , Pancreatic Ducts/surgery , Risk Factors , Postoperative Complications/etiology , Retrospective Studies
11.
Ann Surg Oncol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192012

ABSTRACT

BACKGROUND: Incisional hernia (IH) results in significant morbidity to patients and financial burden to healthcare systems. We aimed to determine the incidence of IH in distal pancreatectomy (DP) patients, stratified by specimen extraction sites. METHOD: Imaging in DP patients in our institution from 2016 to 2021 were reviewed by radiologists blinded to the operative approach. Specimen extraction sites were stratified as upper midline/umbilical (UM) versus Pfannenstiel. IH was defined as fascial defect on postoperative imaging. Patients without preoperative and postoperative imaging were excluded. RESULTS: Of the 219 patients who met our selection criteria, the median age was 64 years, 54% were female, and 64% were White. The majority were minimally invasive (MIS) procedures (n = 131, 60%), of which 52% (n = 64) had a UM incision for specimen extraction, including 45 hand-assist and 19 purely laparoscopic procedures. MIS with Pfannenstiel incisions for specimen extraction was 48% (n = 58), including 44 robotic and 14 purely laparoscopic procedures. Mean follow-up time was 16.3 months (standard deviation [SD] 20.8). Follow-up for MIS procedures with UM incisions was 16.6 months (SD 21.8) versus 15.5 months (SD 18.6) in the Pfannenstiel group (p = 0.30). MIS procedures with UM incisions for specimen extraction had a 17.8 times increase in odds of developing an IH compared with MIS procedures with Pfannenstiel extraction sites (p = 0.01). The overall odds of developing an IH increased by 4% for every month of follow-up (odds ratio 1.04; p < 0.001). CONCLUSION: A Pfannenstiel incision should be performed for specimen extraction in cases with purely laparoscopic or robotic distal pancreatectomy, when feasible.

12.
Metabolomics ; 20(2): 36, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446263

ABSTRACT

INTRODUCTION: Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE: To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS: We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS: Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION: Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.


Subject(s)
Mitochondrial Diseases , Sepsis , Shock, Septic , Humans , Amino Acids , N-Formylmethionine , Metabolomics , Methionine , Lactic Acid , Racemethionine
13.
Biochemistry ; 62(21): 3126-3133, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37884446

ABSTRACT

The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.


Subject(s)
Parkinson Disease , Pyruvaldehyde , Humans , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism , Parkinson Disease/metabolism , Magnesium Oxide , Lactic Acid , Protein Deglycase DJ-1
14.
Nucleic Acids Res ; 49(D1): D1541-D1547, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33174596

ABSTRACT

The mammalian mitochondrial proteome is under dual genomic control, with 99% of proteins encoded by the nuclear genome and 13 originating from the mitochondrial DNA (mtDNA). We previously developed MitoCarta, a catalogue of over 1000 genes encoding the mammalian mitochondrial proteome. This catalogue was compiled using a Bayesian integration of multiple sequence features and experimental datasets, notably protein mass spectrometry of mitochondria isolated from fourteen murine tissues. Here, we introduce MitoCarta3.0. Beginning with the MitoCarta2.0 inventory, we performed manual review to remove 100 genes and introduce 78 additional genes, arriving at an updated inventory of 1136 human genes. We now include manually curated annotations of sub-mitochondrial localization (matrix, inner membrane, intermembrane space, outer membrane) as well as assignment to 149 hierarchical 'MitoPathways' spanning seven broad functional categories relevant to mitochondria. MitoCarta3.0, including sub-mitochondrial localization and MitoPathway annotations, is freely available at http://www.broadinstitute.org/mitocarta and should serve as a continued community resource for mitochondrial biology and medicine.


Subject(s)
Databases, Protein , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Sequence Annotation , Proteome/metabolism , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Datasets as Topic , Humans , Internet , Machine Learning , Mass Spectrometry , Mice , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/classification , Mitochondrial Proteins/genetics , Proteome/classification , Proteome/genetics , Software
15.
Genes Dev ; 29(9): 934-47, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25934505

ABSTRACT

MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.


Subject(s)
Repressor Proteins/genetics , Animals , Autophagy/genetics , Eating/genetics , Energy Metabolism/genetics , Lipid Metabolism/genetics , Longevity/genetics , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , RNA, Transfer/metabolism , Spermidine/metabolism
16.
Genome Res ; 29(1): 146-156, 2019 01.
Article in English | MEDLINE | ID: mdl-30409771

ABSTRACT

Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety "Finola." The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its catalytic activity, providing insight into how cannabinoid diversity arises in cannabis. THCAS and CBDAS (which determine the drug vs. hemp chemotype) are contained within large (>250 kb) retrotransposon-rich regions that are highly nonhomologous between drug- and hemp-type alleles and are furthermore embedded within ∼40 Mb of minimally recombining repetitive DNA. The chromosome structures are similar to those in grains such as wheat, with recombination focused in gene-rich, repeat-depleted regions near chromosome ends. The physical and genetic map should facilitate further dissection of genetic and molecular mechanisms in this commercially and medically important plant.


Subject(s)
Cannabinoids , Cannabis , Chromosome Mapping , Chromosomes, Plant , Ligases , Plant Proteins , Cannabinoids/biosynthesis , Cannabinoids/genetics , Cannabis/genetics , Cannabis/metabolism , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Gene Rearrangement , Ligases/genetics , Ligases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Am J Pathol ; 191(12): 2064-2071, 2021 12.
Article in English | MEDLINE | ID: mdl-34506752

ABSTRACT

Current understanding of coronavirus disease 2019 (COVID-19) pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies assessing patient tissues with advanced molecular tools. Rapid autopsy tissues were evaluated using multiscale, next-generation RNA-sequencing methods (bulk, single-nuclei, and spatial transcriptomics) to provide unprecedented molecular resolution of COVID-19-induced damage. Comparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin receptor-like receptor, or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin-converting enzyme 2 was rarely expressed, whereas basigin showed diffuse expression, and alanyl aminopeptidase, membrane, was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptoms (one had died after a month-long hospitalization with multiorgan involvement, and the other had died after a few days of respiratory symptoms) with digital spatial profiling resulted in distinct molecular phenotypes. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors, map diverse receptors at the single-cell level, and help dissect differences driving diverging clinical courses among individual patients. Extension of this approach to larger data sets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology.


Subject(s)
COVID-19/genetics , COVID-19/pathology , SARS-CoV-2/pathogenicity , Autopsy , Disease Progression , Gene Expression Profiling , Heart/virology , Host-Pathogen Interactions/genetics , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Liver/metabolism , Liver/pathology , Liver/virology , Male , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Olfactory Bulb/virology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/virology , Respiratory System/metabolism , Respiratory System/pathology , Respiratory System/virology , Salivary Glands/metabolism , Salivary Glands/pathology , Salivary Glands/virology , Sequence Analysis, RNA , Signal Transduction/genetics
18.
Am J Nephrol ; 53(5): 352-360, 2022.
Article in English | MEDLINE | ID: mdl-35462372

ABSTRACT

BACKGROUND: Desidustat, an oral hypoxia-inducible factor prolyl hydroxylase inhibitor, is being developed to treat anemia in patients with chronic kidney disease (CKD) without dialysis dependency. METHODS: In total, 588 patients with a clinical diagnosis of anemia due to CKD without dialysis need and with baseline hemoglobin of 7.0-10.0 g/dL (inclusive) were randomized in a 1:1 ratio to receive either desidustat 100 mg oral tablets thrice a week for 24 weeks or biosimilar darbepoetin subcutaneous injection 0.75 µg/kg once in 2 weeks for 24 weeks. The primary outcome was the change from baseline in hemoglobin to evaluation period of Weeks 16-24. Key secondary outcomes included the number of patients with hemoglobin response, changes in the hepcidin levels, changes in the vascular endothelial growth factor (VEGF) levels, and changes in the lipid and lipoprotein profiles. RESULTS: Hemoglobin change from baseline to Weeks 16-24 was 1.95 g/dL in the desidustat group and 1.83 g/dL in the darbepoetin group (difference: 0.11 g/dL; 95% CI: -0.12, 0.34), which met prespecified non-inferiority margin (-0.75 g/dL). The hemoglobin responders were significantly higher (p = 0.0181) in the desidustat group (196 [77.78%]) compared to the darbepoetin group (176 [68.48%]). The difference of change in hepcidin from baseline to Week 12 and Week 24 (p = 0.0032 at Week 12, p = 0.0016 at Week 24) and the difference of change in low-density lipoprotein from baseline to Week 24 (p value = 0.0269) between the two groups was statistically significant. The difference of change from baseline in VEGF to Weeks 12 and 24 between the two groups was not statistically significant. CONCLUSION: Desidustat is non-inferior to darbepoetin in the treatment of anemia due to non-dialysis dependent CKD and it is well-tolerated.


Subject(s)
Anemia , Erythropoietin , Hematinics , Renal Insufficiency, Chronic , Anemia/complications , Anemia/etiology , Darbepoetin alfa/therapeutic use , Erythropoietin/therapeutic use , Hematinics/therapeutic use , Hemoglobins/metabolism , Hepcidins , Humans , Quinolones , Renal Dialysis , Renal Insufficiency, Chronic/drug therapy , Vascular Endothelial Growth Factor A
19.
Nature ; 533(7604): 493-498, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225120

ABSTRACT

Brain metastasis represents a substantial source of morbidity and mortality in various cancers, and is characterized by high resistance to chemotherapy. Here we define the role of the most abundant cell type in the brain, the astrocyte, in promoting brain metastasis. We show that human and mouse breast and lung cancer cells express protocadherin 7 (PCDH7), which promotes the assembly of carcinoma-astrocyte gap junctions composed of connexin 43 (Cx43). Once engaged with the astrocyte gap-junctional network, brain metastatic cancer cells use these channels to transfer the second messenger cGAMP to astrocytes, activating the STING pathway and production of inflammatory cytokines such as interferon-α (IFNα) and tumour necrosis factor (TNF). As paracrine signals, these factors activate the STAT1 and NF-κB pathways in brain metastatic cells, thereby supporting tumour growth and chemoresistance. The orally bioavailable modulators of gap junctions meclofenamate and tonabersat break this paracrine loop, and we provide proof-of-principle that these drugs could be used to treat established brain metastasis.


Subject(s)
Astrocytes/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Gap Junctions/metabolism , Nucleotides, Cyclic/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Benzamides/pharmacology , Benzamides/therapeutic use , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Line, Tumor , Coculture Techniques , Connexin 43/metabolism , Drug Resistance, Neoplasm , Female , Gap Junctions/drug effects , Humans , Immunity, Innate , Interferon-alpha/metabolism , Lung Neoplasms/pathology , Meclofenamic Acid/pharmacology , Meclofenamic Acid/therapeutic use , Membrane Proteins/metabolism , Mice , NF-kappa B/metabolism , Paracrine Communication/drug effects , Protocadherins , STAT1 Transcription Factor/metabolism , Tumor Necrosis Factors/metabolism , Xenograft Model Antitumor Assays
20.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Article in English | MEDLINE | ID: mdl-33752971

ABSTRACT

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Subject(s)
Brain/metabolism , Electron Transport Complex I/genetics , Leigh Disease/metabolism , NAD/genetics , Oxygen/metabolism , Animals , Brain/pathology , Cell Hypoxia/physiology , Disease Models, Animal , Electron Transport Complex I/metabolism , Humans , Leigh Disease/genetics , Leigh Disease/therapy , Metabolomics , Mice , Mitochondria , NAD/deficiency , Neurodegenerative Diseases , Respiration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL