Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
1.
Am J Respir Crit Care Med ; 209(10): 1238-1245, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38190701

ABSTRACT

Rationale: The association of acute cellular rejection (ACR) with chronic lung allograft dysfunction (CLAD) in lung transplant recipients has primarily been described before consensus recommendations incorporating restrictive phenotypes. Furthermore, the association of the degree of molecular allograft injury during ACR with CLAD or death remains undefined. Objectives: To investigate the association of ACR with the risk of CLAD or death and to further investigate if this risk depends on the degree of molecular allograft injury. Methods: This multicenter, prospective cohort study included 188 lung transplant recipients. Subjects underwent serial plasma collections for donor-derived cell-free DNA (dd-cfDNA) at prespecified time points and bronchoscopy. Multivariable Cox proportional-hazards analysis was conducted to analyze the association of ACR with subsequent CLAD or death as well as the association of dd-cfDNA during ACR with risk of CLAD or death. Additional outcomes analyses were performed with episodes of ACR categorized as "high risk" (dd-cfDNA ⩾ 1%) and "low risk" (dd-cfDNA < 1%). Measurements and Main Results: In multivariable analysis, ACR was associated with the composite outcome of CLAD or death (hazard ratio [HR], 2.07 [95% confidence interval (CI), 1.05-4.10]; P = 0.036). Elevated dd-cfDNA ⩾ 1% at ACR diagnosis was independently associated with increased risk of CLAD or death (HR, 3.32; 95% CI, 1.31-8.40; P = 0.012). Patients with high-risk ACR were at increased risk of CLAD or death (HR, 3.13; 95% CI, 1.41-6.93; P = 0.005), whereas patients with low-risk status ACR were not. Conclusions: Patients with ACR are at higher risk of CLAD or death, but this may depend on the degree of underlying allograft injury at the molecular level. Clinical trial registered with www.clinicaltrials.gov (NCT02423070).


Subject(s)
Graft Rejection , Lung Transplantation , Humans , Lung Transplantation/adverse effects , Male , Female , Middle Aged , Prospective Studies , Adult , Allografts , Cell-Free Nucleic Acids/blood , Proportional Hazards Models , Risk Factors , Cohort Studies , Aged , Acute Disease
2.
Am J Respir Crit Care Med ; 209(1): 91-100, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37734031

ABSTRACT

Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Prior studies implicated proxy-defined donor smoking as a risk factor for PGD and mortality. Objectives: We aimed to more accurately assess the impact of donor smoke exposure on PGD and mortality using quantitative smoke exposure biomarkers. Methods: We performed a multicenter prospective cohort study of lung transplant recipients enrolled in the Lung Transplant Outcomes Group cohort between 2012 and 2018. PGD was defined as grade 3 at 48 or 72 hours after lung reperfusion. Donor smoking was defined using accepted thresholds of urinary biomarkers of nicotine exposure (cotinine) and tobacco-specific nitrosamine (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL]) in addition to clinical history. The donor smoking-PGD association was assessed using logistic regression, and survival analysis was performed using inverse probability of exposure weighting according to smoking category. Measurements and Main Results: Active donor smoking prevalence varied by definition, with 34-43% based on urinary cotinine, 28% by urinary NNAL, and 37% by clinical documentation. The standardized risk of PGD associated with active donor smoking was higher across all definitions, with an absolute risk increase of 11.5% (95% confidence interval [CI], 3.8% to 19.2%) by urinary cotinine, 5.7% (95% CI, -3.4% to 14.9%) by urinary NNAL, and 6.5% (95% CI, -2.8% to 15.8%) defined clinically. Donor smoking was not associated with differential post-lung transplant survival using any definition. Conclusions: Donor smoking associates with a modest increase in PGD risk but not with increased recipient mortality. Use of lungs from smokers is likely safe and may increase lung donor availability. Clinical trial registered with www.clinicaltrials.gov (NCT00552357).


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Smoking , Tissue Donors , Humans , Biomarkers , Cotinine , Lung Transplantation/adverse effects , Primary Graft Dysfunction/epidemiology , Prospective Studies , Smoking/adverse effects
3.
Am J Transplant ; 22(10): 2451-2457, 2022 10.
Article in English | MEDLINE | ID: mdl-35322546

ABSTRACT

Plasma donor-derived cell-free DNA (dd-cfDNA) is a sensitive biomarker for the diagnosis of acute rejection in lung transplant recipients; however, differences in dd-cfDNA levels between single and double lung transplant remains unknown. We performed an observational analysis that included 221 patients from two prospective cohort studies who had serial measurements of plasma dd-cfDNA at the time of bronchoscopy and pulmonary function testing, and compared dd-cfDNA between single and double lung transplant recipients across a range of disease states. Levels of dd-cfDNA were lower for single vs. double lung transplant in stable controls (median [IQR]: 0.15% [0.07, 0.44] vs. 0.46% [0.23, 0.74], p < .01) and acute rejection (1.06% [0.75, 2.32] vs. 1.78% [1.18, 5.73], p = .05). Doubling dd-cfDNA for single lung transplant to account for differences in lung mass eliminated this difference. The area under the receiver operating curve (AUC) for the detection of acute rejection was 0.89 and 0.86 for single and double lung transplant, respectively. The optimal dd-cfDNA threshold for the detection of acute rejection was 0.54% in single lung and 1.1% in double lung transplant. In conclusion, accounting for differences in dd-cfDNA in single versus double lung transplant is key for the interpretation of dd-cfDNA testing in research and clinical settings.


Subject(s)
Cell-Free Nucleic Acids , Biomarkers , Graft Rejection/diagnosis , Graft Rejection/etiology , Humans , Lung , Prospective Studies , Tissue Donors , Transplant Recipients
4.
Am J Transplant ; 22(9): 2169-2179, 2022 09.
Article in English | MEDLINE | ID: mdl-35634722

ABSTRACT

Histopathologic lung allograft injuries are putative harbingers for chronic lung allograft dysfunction (CLAD). However, the mechanisms responsible are not well understood. CXCL9 and CXCL10 are potent chemoattractants of mononuclear cells and potential propagators of allograft injury. We hypothesized that these chemokines would be quantifiable in plasma, and would associate with subsequent CLAD development. In this prospective multicenter study, we evaluated 721 plasma samples for CXCL9/CXCL10 levels from 184 participants at the time of transbronchial biopsies during their first-year post-transplantation. We determined the association between plasma chemokines, histopathologic injury, and CLAD risk using Cox proportional hazards models. We also evaluated CXCL9/CXCL10 levels in bronchoalveolar lavage (BAL) fluid and compared plasma to BAL with respect to CLAD risk. Plasma CXCL9/CXCL10 levels were elevated during the injury patterns associated with CLAD, acute rejection, and acute lung injury, with a dose-response relationship between chemokine levels and CLAD risk. Importantly, there were strong interactions between injury and plasma CXCL9/CXCL10, where histopathologic injury associated with CLAD only in the presence of elevated plasma chemokines. We observed similar associations and interactions with BAL CXCL9/CXCL10 levels. Elevated plasma CXCL9/CXCL10 during allograft injury may contribute to CLAD pathogenesis and has potential as a minimally invasive immune monitoring biomarker.


Subject(s)
Graft vs Host Disease , Lung Transplantation , Allografts , Biomarkers , Chemokine CXCL10 , Chemokine CXCL9 , Graft Rejection/diagnosis , Graft Rejection/etiology , Humans , Lung , Lung Transplantation/adverse effects , Prospective Studies
5.
Am J Transplant ; 22(12): 3002-3011, 2022 12.
Article in English | MEDLINE | ID: mdl-36031951

ABSTRACT

We determined prognostic implications of acute lung injury (ALI) and organizing pneumonia (OP), including timing relative to transplantation, in a multicenter lung recipient cohort. We sought to understand clinical risks that contribute to development of ALI/OP. We analyzed prospective, histologic diagnoses of ALI and OP in 4786 lung biopsies from 803 adult lung recipients. Univariable Cox regression was used to evaluate the impact of early (≤90 days) or late (>90 days) posttransplant ALI or OP on risk for chronic lung allograft dysfunction (CLAD) or death/retransplantation. These analyses demonstrated late ALI/OP conferred a two- to threefold increase in the hazards of CLAD or death/retransplantation; there was no association between early ALI/OP and these outcomes. To determine risk factors for late ALI/OP, we used univariable Cox models considering donor/recipient characteristics and posttransplant events as candidate risks. Grade 3 primary graft dysfunction, higher degree of donor/recipient human leukocyte antigen mismatch, bacterial or viral respiratory infection, and an early ALI/OP event were significantly associated with increased late ALI/OP risk. These data from a contemporary, multicenter cohort underscore the prognostic implications of ALI/OP on lung recipient outcomes, clarify the importance of the timing of these events, and identify clinical risks to target for ALI/OP prevention.


Subject(s)
Acute Lung Injury , Lung Transplantation , Pneumonia , Adult , Humans , Prospective Studies , Prognosis , Retrospective Studies , Lung Transplantation/adverse effects , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Lung , Pneumonia/epidemiology , Pneumonia/etiology , Pneumonia/pathology , Risk Factors , Cohort Studies
6.
Am J Transplant ; 21(10): 3401-3410, 2021 10.
Article in English | MEDLINE | ID: mdl-33840162

ABSTRACT

The histopathologic diagnosis of acute allograft injury is prognostically important in lung transplantation with evidence demonstrating a strong and consistent association between acute rejection (AR), acute lung injury (ALI), and the subsequent development of chronic lung allograft dysfunction (CLAD). The pathogenesis of these allograft injuries, however, remains poorly understood. CXCL9 and CXCL10 are CXC chemokines induced by interferon-γ and act as potent chemoattractants of mononuclear cells. We hypothesized that these chemokines are involved in the mononuclear cell recruitment associated with AR and ALI. We further hypothesized that the increased activity of these chemokines could be quantified as increased levels in the bronchoalveolar lavage fluid. In this prospective multicenter study, we evaluate the incidence of histopathologic allograft injury development during the first-year post-transplant and measure bronchoalveolar CXCL9 and CXCL10 levels at the time of the biopsy. In multivariable models, CXCL9 levels were 1.7-fold and 2.1-fold higher during AR and ALI compared with "normal" biopsies without histopathology. Similarly, CXCL10 levels were 1.6-fold and 2.2-fold higher during these histopathologies, respectively. These findings support the association of CXCL9 and CXCL10 with episodes of AR and ALI and provide potential insight into the pathogenesis of these deleterious events.


Subject(s)
Chemokine CXCL10 , Graft Rejection , Allografts , Chemokine CXCL9 , Graft Rejection/etiology , Lung , Prospective Studies
7.
J Immunol ; 203(8): 2063-2075, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31554693

ABSTRACT

CMV remains an important opportunistic pathogen in high-risk lung transplant recipients. We characterized the phenotype and function of CD8+ T cells from acute/primary into chronic CMV infection in 23 (donor+/recipient-; D+R-) lung transplant recipients and found rapid induction of both KLRG1+ and/or CD57+ CMV-specific CD8+ T cells with unexpected coexpression of CD27. These cells demonstrated maturation from an acute effector T cell (TAEFF) to an effector memory T cell (TEM) phenotype with progressive enrichment of KLRG1+CD57+CD27- cells into memory. CMV-specific KLRG1+ TAEFF were capable of in vitro proliferation that diminished upon acquisition of CD57, whereas only KLRG1+ expression correlated with T-bet expression and effector function. In contrast to blood TAEFF, lung mucosal TAEFF demonstrated reduced KLRG1/T-bet expression but similar CD57 levels. Additionally, increased KLRG1+TAEFF were associated with early immune viral control following primary infection. To our knowledge, our findings provide new insights into the roles of KLRG1 and CD57 expression in human T cells, forming the basis for a refined model of CD8+ T cell differentiation during CMV infection.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus/immunology , Lectins, C-Type/immunology , Receptors, Immunologic/immunology , Adult , CD57 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/immunology , Cell Proliferation , Female , Humans , Male , Middle Aged , Young Adult
8.
Am J Respir Crit Care Med ; 202(4): 576-585, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32379979

ABSTRACT

Rationale: Acute rejection, manifesting as lymphocytic inflammation in a perivascular (acute perivascular rejection [AR]) or peribronchiolar (lymphocytic bronchiolitis [LB]) distribution, is common in lung transplant recipients and increases the risk for chronic graft dysfunction.Objectives: To evaluate clinical factors associated with biopsy-proven acute rejection during the first post-transplant year in a present-day, five-center lung transplant cohort.Methods: We analyzed prospective diagnoses of AR and LB from over 2,000 lung biopsies in 400 newly transplanted adult lung recipients. Because LB without simultaneous AR was rare, our analyses focused on risk factors for AR. Multivariable Cox proportional hazards models were used to assess donor and recipient factors associated with the time to the first AR occurrence.Measurements and Main Results: During the first post-transplant year, 53.3% of patients experienced at least one AR episode. Multivariable proportional hazards analyses accounting for enrolling center effects identified four or more HLA mismatches (hazard ratio [HR], 2.06; P ≤ 0.01) as associated with increased AR hazards, whereas bilateral transplantation (HR, 0.57; P ≤ 0.01) was associated with protection from AR. In addition, Wilcoxon rank-sum analyses demonstrated bilateral (vs. single) lung recipients, and those with fewer than four (vs. more than four) HLA mismatches demonstrated reduced AR frequency and/or severity during the first post-transplant year.Conclusions: We found a high incidence of AR in a contemporary multicenter lung transplant cohort undergoing consistent biopsy sampling. Although not previously recognized, the finding of reduced AR in bilateral lung recipients is intriguing, warranting replication and mechanistic exploration.


Subject(s)
Bronchiolitis/epidemiology , Graft Rejection/epidemiology , Lung Transplantation , Postoperative Complications/epidemiology , Acute Disease , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Risk Factors , Time Factors
9.
Am J Respir Crit Care Med ; 199(3): 362-376, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30088779

ABSTRACT

RATIONALE: Cytomegalovirus (CMV)-related morbidities remain one of the most common complications after lung transplantation and have been linked to allograft dysfunction, but the factors that predict high risk for CMV complications and effective immunity are incompletely understood. OBJECTIVES: To determine if short telomeres in idiopathic pulmonary fibrosis (IPF) lung transplant recipients (LTRs) predict the risk for CMV-specific T-cell immunity and viral control. METHODS: We studied IPF-LTRs (n = 42) and age-matched non-IPF-LTRs (n = 42) and assessed CMV outcomes. We measured lymphocyte telomere length and DNA sequencing, and assessed CMV-specific T-cell immunity in LTRs at high risk for CMV events, using flow cytometry and fluorescence in situ hybridization. MEASUREMENTS AND MAIN RESULTS: We identified a high prevalence of relapsing CMV viremia in IPF-LTRs compared with non-IPF-LTRs (69% vs. 31%; odds ratio, 4.98; 95% confidence interval, 1.95-12.50; P < 0.001). Within this subset, IPF-LTRs who had short telomeres had the highest risk of CMV complications (P < 0.01) including relapsing-viremia episodes, end-organ disease, and CMV resistance to therapy, as well as shorter time to viremia versus age-matched non-IPF control subjects (P < 0.001). The short telomere defect in IPF-LTRs was associated with significantly impaired CMV-specific proliferative responses, T-cell effector functions, and induction of the major type-1 transcription factor T-bet (T-box 21;TBX21). CONCLUSIONS: Because the short telomere defect has been linked to the pathogenesis of IPF in some cases, our data indicate that impaired CMV immunity may be a systemic manifestation of telomere-mediated disease in these patients. Identifying this high-risk subset of LTRs has implications for risk assessment, management, and potential strategies for averting post-transplant CMV morbidities.


Subject(s)
Cytomegalovirus Infections/complications , Cytomegalovirus Infections/immunology , Idiopathic Pulmonary Fibrosis/complications , Lung Transplantation , Telomere/immunology , Transplant Recipients/statistics & numerical data , Adult , Aged , Cytomegalovirus/immunology , Female , Humans , Idiopathic Pulmonary Fibrosis/immunology , Immunity , Male , Middle Aged
10.
Am J Respir Crit Care Med ; 197(2): 235-243, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28872353

ABSTRACT

RATIONALE: Primary graft dysfunction (PGD) is a form of acute lung injury that occurs after lung transplantation. The definition of PGD was standardized in 2005. Since that time, clinical practice has evolved, and this definition is increasingly used as a primary endpoint for clinical trials; therefore, validation is warranted. OBJECTIVES: We sought to determine whether refinements to the 2005 consensus definition could further improve construct validity. METHODS: Data from the Lung Transplant Outcomes Group multicenter cohort were used to compare variations on the PGD definition, including alternate oxygenation thresholds, inclusion of additional severity groups, and effects of procedure type and mechanical ventilation. Convergent and divergent validity were compared for mortality prediction and concurrent lung injury biomarker discrimination. MEASUREMENTS AND MAIN RESULTS: A total of 1,179 subjects from 10 centers were enrolled from 2007 to 2012. Median length of follow-up was 4 years (interquartile range = 2.4-5.9). No mortality differences were noted between no PGD (grade 0) and mild PGD (grade 1). Significantly better mortality discrimination was evident for all definitions using later time points (48, 72, or 48-72 hours; P < 0.001). Biomarker divergent discrimination was superior when collapsing grades 0 and 1. Additional severity grades, use of mechanical ventilation, and transplant procedure type had minimal or no effect on mortality or biomarker discrimination. CONCLUSIONS: The PGD consensus definition can be simplified by combining lower PGD grades. Construct validity of grading was present regardless of transplant procedure type or use of mechanical ventilation. Additional severity categories had minimal impact on mortality or biomarker discrimination.


Subject(s)
Cause of Death , Lung Transplantation/adverse effects , Primary Graft Dysfunction/mortality , Primary Graft Dysfunction/pathology , Adult , Biomarkers/analysis , Cohort Studies , Consensus , Female , Graft Rejection , Graft Survival , Humans , Kaplan-Meier Estimate , Logistic Models , Lung Transplantation/methods , Lung Transplantation/mortality , Male , Middle Aged , Proportional Hazards Models , Reproducibility of Results , Retrospective Studies , Risk Assessment , Severity of Illness Index , Survival Rate , Time Factors , United States , Young Adult
11.
J Immunol ; 196(2): 877-90, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26663780

ABSTRACT

CMV remains an important opportunistic pathogen in solid organ and hematopoietic cell transplantation, particularly in lung transplant recipients (LTRs). LTRs mismatched for CMV (donor(+)/recipient(-); D(+)R(-)) are at high risk for active CMV infection and increased mortality; however, the immune correlates of viral control remain incompletely understood. We prospectively studied 27 D(+)R(-) LTRs during primary CMV infection to determine whether acute CD4(+) T cell parameters differentiated the capacity for viral control during early chronic infection. Unexpectedly, the T-box transcription factor, T-bet, was expressed at low levels in CD4(+) compared with CD8(+) T cells during acute primary infection. However, the capacity for in vitro CMV phosphoprotein 65-specific proliferation and CD4(+)T-bet(+) induction differentiated LTR controllers from early viremic relapsers, correlating with granzyme B loading and effector multifunction. Furthermore, impaired CMV-specific proliferative responses from relapsers, along with T-bet, and effector function could be significantly rescued, most effectively with phosphoprotein 65 Ag and combined exogenous IL-2 and IL-12. Acute CD4(+) T cell CMV-specific proliferative and effector responses were highly IL-12-dependent in blocking studies. In addition, we generated monocyte-derived dendritic cells using PBMC obtained during primary infection from relapsers and observed impaired monocyte-derived dendritic cell differentiation, a reduced capacity for IL-12 production, but increased IL-10 production compared with controls, suggesting an APC defect during acute CMV viremia. Taken together, these data show an important role for CMV-specific CD4(+) effector responses in differentiating the capacity of high-risk LTRs to establish durable immune control during early chronic infection and provide evidence for IL-12 as a key factor driving these responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Lung Transplantation/adverse effects , Lymphocyte Activation/immunology , T-Box Domain Proteins/biosynthesis , Adult , Cell Proliferation , Cells, Cultured , Cytomegalovirus/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Female , Flow Cytometry , Humans , Interleukin-12 , Male , Middle Aged , T-Box Domain Proteins/immunology , Young Adult
12.
J Immunol ; 193(11): 5709-5722, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25339676

ABSTRACT

CMV remains an important opportunistic pathogen in solid organ transplantation, particularly in lung transplant recipients (LTRs). LTRs mismatched for CMV (donor+/recipient-; D+R-) are at high-risk for active CMV infection and increased mortality, however the immune correlates of viral control remain incompletely understood. We prospectively studied 23 D+R- LTRs during primary CMV infection to determine whether acute CD8(+) T cell parameters differentiated the capacity for viral control in early chronic infection. T-box transcription factors expression patterns of T-bet > Eomesodermin (Eomes) differentiated LTR controllers from viremic relapsers and reciprocally correlated with granzyme B loading, and CMV phosphoprotein 65 (pp65)-specific CD8(+)IFN-γ(+) and CD107a(+) frequencies. LTR relapsers demonstrated reduced CD8(+)Ki67(+) cells ex vivo and substantially impaired CD8(+)pp65-specific in vitro proliferative responses at 6 d, with concomitantly lower pp65-specific CD4(+)IL-2(+) frequencies, as compared with LTR controllers. However, CMV-specific in vitro proliferative responses could be significantly rescued, most effectively with pp65 Ag and exogenous IL-2, resulting in an increased T-bet:Eomes balance, and enhanced effector function. Using class I CMV tetramers, we observed similar frequencies between relapsers and controllers, although reduced T-bet:Eomes balance in tetramer(+) cells from relapsers, along with impaired CD8(+) effector responses to tetramer-peptide restimulation. Taken together, these data show impaired CMV-specific CD8(+) effector responses is not for complete lack of CMV-specific cells but rather underscores the importance of the T-bet:Eomes balance, with CMV-specific proliferation a key factor driving early T-bet expression and effector function in CD8(+) T cells during primary infection and differentiating the capacity of high-risk LTRs to establish immune control during early chronic infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Lung Transplantation , Postoperative Complications/immunology , T-Box Domain Proteins/metabolism , Adult , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , Chronic Disease , Cytomegalovirus Infections/prevention & control , Cytotoxicity, Immunologic , Female , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Male , Middle Aged , Phosphoproteins/immunology , Postoperative Complications/prevention & control , Prospective Studies , Recurrence , T-Box Domain Proteins/genetics , Viral Matrix Proteins/immunology , Young Adult
13.
Eur Respir J ; 44(1): 178-87, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24833766

ABSTRACT

Lung transplantation is the only intervention that prolongs survival in idiopathic pulmonary fibrosis (IPF). Telomerase mutations are the most common identifiable genetic cause of IPF, and at times, the telomere defect manifests in extrapulmonary disease such as bone marrow failure. The relevance of this genetic diagnosis for lung transplant management has not been examined. We gathered an international series of telomerase mutation carriers who underwent lung transplant in the U.S.A., Australia and Sweden. The median age at transplant was 52 years. Seven recipients are alive with a median follow-up of 1.9 years (range 6 months to 9 years); one died at 10 months. The most common complications were haematological, with recipients requiring platelet transfusion support (88%) and adjustment of immunosuppressives (100%). Four recipients (50%) required dialysis for tubular injury and calcineurin inhibitor toxicity. These complications occurred at significantly higher rates relative to historic series (p<0.0001). Our observations support the feasibility of lung transplantation in telomerase mutation carriers; however, severe post-transplant complications reflecting the syndromic nature of their disease appear to occur at higher rates. While these findings need to be expanded to other cohorts, caution should be exercised when approaching the transplant evaluation and management of this subset of pulmonary fibrosis patients.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Lung Transplantation , Mutation , Telomerase/genetics , Adult , Australia , Cohort Studies , Female , Humans , Male , Middle Aged , Postoperative Complications , Renal Insufficiency , Sweden , Treatment Outcome , United States
14.
Am J Respir Crit Care Med ; 187(5): 527-34, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23306540

ABSTRACT

RATIONALE: Primary graft dysfunction (PGD) is the main cause of early morbidity and mortality after lung transplantation. Previous studies have yielded conflicting results for PGD risk factors. OBJECTIVES: We sought to identify donor, recipient, and perioperative risk factors for PGD. METHODS: We performed a 10-center prospective cohort study enrolled between March 2002 and December 2010 (the Lung Transplant Outcomes Group). The primary outcome was International Society for Heart and Lung Transplantation grade 3 PGD at 48 or 72 hours post-transplant. The association of potential risk factors with PGD was analyzed using multivariable conditional logistic regression. MEASUREMENTS AND MAIN RESULTS: A total of 1,255 patients from 10 centers were enrolled; 211 subjects (16.8%) developed grade 3 PGD. In multivariable models, independent risk factors for PGD were any history of donor smoking (odds ratio [OR], 1.8; 95% confidence interval [CI], 1.2-2.6; P = 0.002); FiO2 during allograft reperfusion (OR, 1.1 per 10% increase in FiO2; 95% CI, 1.0-1.2; P = 0.01); single lung transplant (OR, 2; 95% CI, 1.2-3.3; P = 0.008); use of cardiopulmonary bypass (OR, 3.4; 95% CI, 2.2-5.3; P < 0.001); overweight (OR, 1.8; 95% CI, 1.2-2.7; P = 0.01) and obese (OR, 2.3; 95% CI, 1.3-3.9; P = 0.004) recipient body mass index; preoperative sarcoidosis (OR, 2.5; 95% CI, 1.1-5.6; P = 0.03) or pulmonary arterial hypertension (OR, 3.5; 95% CI, 1.6-7.7; P = 0.002); and mean pulmonary artery pressure (OR, 1.3 per 10 mm Hg increase; 95% CI, 1.1-1.5; P < 0.001). PGD was significantly associated with 90-day (relative risk, 4.8; absolute risk increase, 18%; P < 0.001) and 1-year (relative risk, 3; absolute risk increase, 23%; P < 0.001) mortality. CONCLUSIONS: We identified grade 3 PGD risk factors, several of which are potentially modifiable and should be prioritized for future research aimed at preventative strategies. Clinical trial registered with www.clinicaltrials.gov (NCT 00552357).


Subject(s)
Lung Transplantation/adverse effects , Primary Graft Dysfunction/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Logistic Models , Lung Transplantation/mortality , Male , Middle Aged , Multivariate Analysis , Primary Graft Dysfunction/mortality , Prospective Studies , Risk Factors , United States/epidemiology
15.
J Thorac Cardiovasc Surg ; 167(2): 549-555.e1, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37286074

ABSTRACT

OBJECTIVE: End-stage lung disease from severe COVID-19 infection is an increasingly common indication for lung transplantation (LT), but there are limited data on outcomes. We evaluated 1-year COVID-19 LT outcomes. METHODS: We identified all adult US LT recipients January 2020 to October 2022 in the Scientific Registry for Transplant Recipients, using diagnosis codes to identify recipients transplanted for COVID-19. We used multivariable regression to compare in-hospital acute rejection, prolonged ventilator support, tracheostomy, dialysis, and 1-year mortality between COVID-19 and non-COVID-19 recipients, adjusting for donor, recipient, and transplant characteristics. RESULTS: LT for COVID-19 increased from 0.8% to 10.7% of total LT volume during 2020 to 2021. The number of centers performing LT for COVID-19 increased from 12 to 50. Recipients transplanted for COVID-19 were younger; were more likely to be male and Hispanic; were more likely to be on a ventilator, extracorporeal membrane oxygenation support, and dialysis pre-LT; were more likely to receive bilateral LT; and had higher lung allocation score and shorter waitlist time than other recipients (all P values < .001). COVID-19 LT had higher risk of prolonged ventilator support (adjusted odds ratio, 2.28; P < .001), tracheostomy (adjusted odds ratio 5.3; P < .001), and longer length of stay (median, 27 vs 19 days; P < .001). Risk of in-hospital acute rejection (adjusted odds ratio, 0.99; P = .95) and 1-year mortality (adjusted hazard ratio, 0.73; P = .12) were similar for COVID-19 LTs and LTs for other indications, even accounting for center-level differences. CONCLUSIONS: COVID-19 LT is associated with higher risk of immediate postoperative complications but similar risk of 1-year mortality despite more severe pre-LT illness. These encouraging results support the ongoing use of LT for COVID-19-related lung disease.


Subject(s)
COVID-19 , Lung Diseases , Lung Transplantation , Adult , Humans , Male , Female , Renal Dialysis , Lung Transplantation/adverse effects , Tissue Donors , Lung Diseases/surgery , Retrospective Studies
16.
J Thorac Cardiovasc Surg ; 167(2): 556-565.e8, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37286076

ABSTRACT

OBJECTIVE: To determine whether allograft ischemic times affect outcomes following bilateral, single, and redo lung transplantation. METHODS: A nationwide cohort of lung transplant recipients from 2005 through 2020 was examined using the Organ Procurement and Transplantation Network registry. The effects of standard (<6 hours) and extended (≥6 hours) ischemic times on outcomes following primary bilateral (n = 19,624), primary single (n = 688), redo bilateral (n = 8461), and redo single (n = 449) lung transplantation were analyzed. A priori subgroup analysis was performed in the primary and redo bilateral-lung transplant cohorts by further stratifying the extended ischemic time group into mild (≥6 and <8 hours), moderate (≥8 and <10 hours), and long (≥10 hours) subgroups. Primary outcomes included 30-day mortality, 1-year mortality, intubation at 72 hours' posttransplant, extracorporeal membrane oxygenation (ECMO) support at 72 hours' posttransplant, and a composite variable of intubation or ECMO at 72 hours' posttransplant. Secondary outcomes included acute rejection, postoperative dialysis, and hospital length of stay. RESULTS: Recipients of allografts with ischemic times ≥6 hours experienced increased 30-day and 1-year mortality following primary bilateral-lung transplantation, but increased mortality was not observed following primary single, redo bilateral, or redo single-lung transplants. Extended ischemic times correlated with prolonged intubation or increased postoperative ECMO support in the primary bilateral, primary single, and redo bilateral-lung transplant cohorts but did not affect these outcomes following redo single-lung transplantation. CONCLUSIONS: Since prolonged allograft ischemia correlates with worse transplant outcomes, the decision to use donor lungs with extended ischemic times must consider the specific benefits and risks associated with individual recipient factors and institutional expertise.


Subject(s)
Lung Transplantation , Renal Dialysis , Humans , Retrospective Studies , Time Factors , Lung Transplantation/adverse effects , Ischemia , Allografts
17.
J Heart Lung Transplant ; 43(4): 563-570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37972825

ABSTRACT

BACKGROUND: The association between organizing pneumonia (OP) after lung transplantation with the development of acute rejection (AR) remains undefined. In addition, molecular allograft injury, as measured by donor-derived cell-free DNA (dd-cfDNA), during episodes of OP and its relationship to episodes of AR, chronic lung allograft dysfunction (CLAD), or death is unknown. METHODS: This multicenter, prospective cohort study collected serial plasma samples from 188 lung transplant recipients for dd-cfDNA at the time of bronchoscopy with biopsy. Multivariable Cox regression was used to analyze the association between OP with the development of AR (antibody-mediated rejection (AMR) and acute cellular rejection (ACR)), CLAD, and death. Multivariable models were performed to test the association of dd-cfDNA at OP with the risk of AR, CLAD, or death. RESULTS: In multivariable analysis, OP was associated with increased risk of AMR (hazard ratio (HR) = 2.26, 95% confidence interval (CI) 1.04-4.92, p = 0.040) but not ACR (HR = 1.29, 95% CI: 0.66-2.5, p = 0.45) or the composite outcome of CLAD or death (HR = 0.88, 95% CI, 0.47-1.65, p = 0.69). Median levels of dd-cfDNA were higher in OP compared to stable controls (1.33% vs 0.43%, p = 0.0006). Multivariable analysis demonstrated that levels of dd-cfDNA at diagnosis of OP were associated with increased risk of both AMR (HR = 1.29, 95% CI 1.03-1.62, p = 0.030) and death (HR = 1.16, 95% CI, 1.02-1.31, p = 0.026). CONCLUSIONS: OP is independently associated with an increased risk of AMR but not CLAD or death. The degree of molecular allograft injury at the diagnosis of OP may further predict the risk of AMR and death.


Subject(s)
Cell-Free Nucleic Acids , Organizing Pneumonia , Pneumonia , Humans , Prospective Studies , Transplantation, Homologous , Antibodies , Allografts , Graft Rejection/diagnosis
18.
Ann Thorac Surg ; 117(4): 725-732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37271446

ABSTRACT

BACKGROUND: With the increasing age of lung transplant candidates, we studied waitlist and posttransplantation outcomes of candidates ≥70 years during the Lung Allocation Score era. METHODS: Adult lung transplant candidates from 2005 to 2020 in the United Network for Organ Sharing database were included and stratified on the basis of age at listing into 18 to 59 years old, 60 to 69 years old, and ≥70 years old. Baseline characteristics, waitlist outcomes, and posttransplantation outcomes were assessed. RESULTS: A total of 37,623 candidates were included (52.3% aged 18-59 years, 40.6% aged 60-69 years, 7.1% aged ≥70 years). Candidates ≥70 years were more likely than younger candidates to receive a transplant (81.9% vs 72.7% [aged 60-69 years] vs 61.6% [aged 18-59 years]) and less likely to die or to deteriorate on the waitlist within 1 year (9.1% vs 10.1% [aged 60-69 years] vs 12.2% [aged 18-59 years]; P < .001). Donors for older recipients were more likely to be extended criteria (75.7% vs 70.1% [aged 60-69 years] vs 65.7% [aged 18-59 years]; P < .001). Recipients ≥70 years were found to have lower rates of acute rejection (6.7% vs 7.4% [aged 60-69 years] vs 9.2% [aged 18-59 years]; P < .001) and prolonged intubation (21.7% vs 27.4% [aged 60-69 years] vs 34.5% [aged 18-59 years]; P < .001). Recipients aged ≥70 years had increased 1-year (adjusted hazard ratio [aHR], 1.19 [95% CI, 1.06-1.33]; P < .001), 3-year (aHR, 1.28 [95% CI, 1.18-1.39]; P < .001), and 5-year mortality (aHR, 1.29 [95% CI, 1.21-1.38]; P < .001) compared with recipients aged 60 to 69 years. CONCLUSIONS: Candidates ≥70 years had favorable waitlist and perioperative outcomes despite increased use of extended criteria donors. Careful selection of candidates and postoperative surveillance may improve posttransplantation survival in this population.


Subject(s)
Lung Transplantation , Tissue Donors , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aged , Proportional Hazards Models , Registries , Waiting Lists , Lung , Retrospective Studies
19.
J Thorac Cardiovasc Surg ; 168(2): 431-439, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38141853

ABSTRACT

BACKGROUND: This study compared utilization and outcomes of the 2 widely utilized ex vivo lung perfusion (EVLP) platforms in the United States: a static platform and a portable platform. METHODS: Adult (age 18 years or older) bilateral lung-only transplants utilizing EVLP between February 28, 2018, and December 31, 2022, in the United Network for Organ Sharing database were included. Predischarge acute rejection, intubation at 72 hours posttransplant, extracorporeal membrane oxygenation at 72 hours posttransplant, primary graft dysfunction grade 3 at 72 hours posttransplant, 30-day mortality, and 1-year mortality were evaluated using multivariable regressions. RESULTS: Overall, 607 (6.3%) lung transplants during the study period used EVLP (51.2% static, 48.8% portable). Static EVLP was primarily utilized in the eastern United States, whereas portable EVLP was primarily utilized in the western United States. Static EVLP donors were more likely to be donation after circulatory death (33.4% vs 26.0%; P = .005), have a >20 pack-year smoking history (13.5% vs 6.5%; P = .005), and be extended criteria donors (92.3% vs 85.0%; P = .013), whereas portable EVLP donors were more likely to be older than age 55 years (14.2% vs 8.0%; P = .02). Transplants utilizing the static and portable platforms had similar risk of acute rejection, intubation at 72 hours, extracorporeal membrane oxygenation at 72 hours, primary graft dysfunction grade 3 at 72 hours, and posttransplant mortality at 30 days and 1 year (all P values > .05). CONCLUSIONS: The static and portable platforms had significant differences in donor characteristics and geographic distributions of utilization. Despite this, posttransplant survival was similar between the 2 EVLP platforms.


Subject(s)
Lung Transplantation , Perfusion , Humans , Lung Transplantation/mortality , Lung Transplantation/statistics & numerical data , Lung Transplantation/trends , Male , Female , Middle Aged , United States , Adult , Perfusion/methods , Perfusion/mortality , Perfusion/adverse effects , Perfusion/instrumentation , Treatment Outcome , Retrospective Studies , Time Factors , Databases, Factual , Risk Factors , Graft Rejection , Graft Survival , Aged
20.
J Heart Lung Transplant ; 43(4): 633-641, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38065239

ABSTRACT

BACKGROUND: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Accurate prediction of PGD risk could inform donor approaches and perioperative care planning. We sought to develop a clinically useful, generalizable PGD prediction model to aid in transplant decision-making. METHODS: We derived a predictive model in a prospective cohort study of subjects from 2012 to 2018, followed by a single-center external validation. We used regularized (lasso) logistic regression to evaluate the predictive ability of clinically available PGD predictors and developed a user interface for clinical application. Using decision curve analysis, we quantified the net benefit of the model across a range of PGD risk thresholds and assessed model calibration and discrimination. RESULTS: The PGD predictive model included distance from donor hospital to recipient transplant center, recipient age, predicted total lung capacity, lung allocation score (LAS), body mass index, pulmonary artery mean pressure, sex, and indication for transplant; donor age, sex, mechanism of death, and donor smoking status; and interaction terms for LAS and donor distance. The interface allows for real-time assessment of PGD risk for any donor/recipient combination. The model offers decision-making net benefit in the PGD risk range of 10% to 75% in the derivation centers and 2% to 10% in the validation cohort, a range incorporating the incidence in that cohort. CONCLUSION: We developed a clinically useful PGD predictive algorithm across a range of PGD risk thresholds to support transplant decision-making, posttransplant care, and enrich samples for PGD treatment trials.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Risk Factors , Risk Assessment , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/epidemiology , Prospective Studies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL