ABSTRACT
BACKGROUND: There is a paucity of data regarding the phenotype of dilated cardiomyopathy (DCM) gene variants in the general population. We aimed to determine the frequency and penetrance of DCM-associated putative pathogenic gene variants in a general adult population, with a focus on the expression of clinical and subclinical phenotype, including structural, functional, and arrhythmic disease features. METHODS: UK Biobank participants who had undergone whole exome sequencing, ECG, and cardiovascular magnetic resonance imaging were selected for study. Three variant-calling strategies (1 primary and 2 secondary) were used to identify participants with putative pathogenic variants in 44 DCM genes. The observed phenotype was graded DCM (clinical or cardiovascular magnetic resonance diagnosis); early DCM features, including arrhythmia or conduction disease, isolated ventricular dilation, and hypokinetic nondilated cardiomyopathy; or phenotype-negative. RESULTS: Among 18 665 individuals included in the study, 1463 (7.8%) possessed ≥1 putative pathogenic variant in 44 DCM genes by the main variant calling strategy. A clinical diagnosis of DCM was present in 0.34% and early DCM features in 5.7% of individuals with putative pathogenic variants. ECG and cardiovascular magnetic resonance analysis revealed evidence of subclinical DCM in an additional 1.6% and early DCM features in an additional 15.9% of individuals with putative pathogenic variants. Arrhythmias or conduction disease (15.2%) were the most common early DCM features, followed by hypokinetic nondilated cardiomyopathy (4%). The combined clinical/subclinical penetrance was ≤30% with all 3 variant filtering strategies. Clinical DCM was slightly more prevalent among participants with putative pathogenic variants in definitive/strong evidence genes as compared with those with variants in moderate/limited evidence genes. CONCLUSIONS: In the UK Biobank, ≈1 of 6 of adults with putative pathogenic variants in DCM genes exhibited early DCM features potentially associated with DCM genotype, most commonly manifesting with arrhythmias in the absence of substantial ventricular dilation or dysfunction.
Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Biological Specimen Banks , Cardiomyopathies/complications , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/epidemiology , Cardiomyopathy, Dilated/genetics , Humans , Penetrance , United Kingdom/epidemiologyABSTRACT
AIMS: Prediction and early detection of heart failure (HF) is crucial to mitigate its impact on quality of life, survival, and healthcare expenditure. Here, we explored the predictive value of serum metabolomics (168 metabolites detected by proton nuclear magnetic resonance [1H-NMR] spectroscopy) for incident HF. METHODS AND RESULTS: Leveraging data of 68 311 individuals and >0.8 million person-years of follow-up from the UK Biobank cohort, we (i) fitted per-metabolite Cox proportional hazards models to assess individual metabolite associations, and (ii) trained and validated elastic net models to predict incident HF using the serum metabolome. We benchmarked discriminative performance against a comprehensive, well-validated clinical risk score (Pooled Cohort Equations to Prevent HF [PCP-HF]). During a median follow-up of ≈12.3 years, several metabolites showed independent association with incident HF (90/168 adjusting for age and sex, 48/168 adjusting for PCP-HF). Performance-optimized risk models effectively retained key predictors representing highly correlated clusters (≈80% feature reduction). Adding metabolomics to PCP-HF improved predictive performance (Harrel's C: 0.768 vs. 0.755, ΔC = 0.013, [95% confidence interval [CI] 0.004-0.022], continuous net reclassification improvement [NRI]: 0.287 [95% CI 0.200-0.367], relative integrated discrimination improvement [IDI]: 17.47% [95% CI 9.463-27.825]). Models including age, sex and metabolomics performed almost as well as PCP-HF (Harrel's C: 0.745 vs. 0.755, ΔC = 0.010 [95% CI -0.004 to 0.027], continuous NRI: 0.097 [95% CI -0.025 to 0.217], relative IDI: 13.445% [95% CI -10.608 to 41.454]). Risk and survival stratification was improved by integrating metabolomics. CONCLUSION: Serum metabolomics improves incident HF risk prediction over PCP-HF. Scores based on age, sex and metabolomics exhibit similar predictive power to clinically-based models, potentially offering a cost-effective, standardizable, and scalable single-domain alternative.
Subject(s)
Heart Failure , Metabolomics , Humans , Heart Failure/blood , Heart Failure/epidemiology , Female , Male , Metabolomics/methods , Risk Assessment/methods , Middle Aged , Incidence , Aged , Biomarkers/blood , United Kingdom/epidemiology , Follow-Up Studies , Predictive Value of TestsABSTRACT
BACKGROUND: Sudden death is the leading cause of mortality in medically refractory epilepsy. Middle-aged persons with epilepsy (PWE) are under investigated regarding their mortality risk and burden of cardiovascular disease (CVD). METHODS: Using UK Biobank, we identified 7786 (1.6%) participants with diagnoses of epilepsy and 6,171,803 person-years of follow-up (mean 12.30 years, standard deviation 1.74); 566 patients with previous histories of stroke were excluded. The 7220 PWE comprised the study cohort with the remaining 494,676 without epilepsy as the comparator group. Prevalence of CVD was determined using validated diagnostic codes. Cox proportional hazards regression was used to assess all-cause mortality and sudden death risk. RESULTS: Hypertension, coronary artery disease, heart failure, valvular heart disease, and congenital heart disease were more prevalent in PWE. Arrhythmias including atrial fibrillation/flutter (12.2% vs 6.9%; P < 0.01), bradyarrhythmias (7.7% vs 3.5%; P < 0.01), conduction defects (6.1% vs 2.6%; P < 0.01), and ventricular arrhythmias (2.3% vs 1.0%; P < 0.01), as well as cardiac implantable electric devices (4.6% vs 2.0%; P < 0.01) were more prevalent in PWE. PWE had higher adjusted all-cause mortality (hazard ratio [HR], 3.9; 95% confidence interval [CI], 3.01-3.39), and sudden death-specific mortality (HR, 6.65; 95% CI, 4.53-9.77); and were almost 2 years younger at death (68.1 vs 69.8; P < 0.001). CONCLUSIONS: Middle-aged PWE have increased all-cause and sudden death-specific mortality and higher burden of CVD including arrhythmias and heart failure. Further work is required to elucidate mechanisms underlying all-cause mortality and sudden death risk in PWE of middle age, to identify prognostic biomarkers and develop preventative therapies in PWE.
Subject(s)
Cardiovascular Diseases , Epilepsy , Heart Failure , Middle Aged , Humans , Cardiovascular Diseases/epidemiology , UK Biobank , Biological Specimen Banks , Risk Factors , Epilepsy/complications , Epilepsy/epidemiology , Death, Sudden/epidemiology , Death, Sudden/etiology , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiologyABSTRACT
Precision medicine, which among other aspects includes an individual's genomic data in diagnosis and management, has become the standard-of-care for Mendelian cardiovascular disease (CVD). However, early identification and management of asymptomatic patients with potentially lethal and manageable Mendelian CVD through screening, which is the promise of precision health, remains an unsolved challenge. The reduced costs of genomic sequencing have enabled the creation of biobanks containing in-depth genetic and health information, which have facilitated the understanding of genetic variation, penetrance, and expressivity, moving us closer to the genotype-first screening of asymptomatic individuals for Mendelian CVD. This approach could transform health care by diagnostic refinement and facilitating prevention or therapeutic interventions. Yet, potential benefits must be weighed against the potential risks, which include evolving variant pathogenicity assertion or identification of variants with low disease penetrance; costly, stressful, and inappropriate diagnostic evaluations; negative psychological impact; disqualification for employment or of competitive sports; and denial of insurance. Furthermore, the natural history of Mendelian CVD is often unpredictable, making identification of those who will benefit from preventive measures a priority. Currently, there is insufficient evidence that population-based genetic screening for Mendelian CVD can reduce adverse outcomes at a reasonable cost to an extent that outweighs the harms of true-positive and false-positive results. Besides technical, clinical, and financial burdens, ethical and legal aspects pose unprecedented challenges. This review highlights key developments in the field of genotype-first approaches to Mendelian CVD and summarizes challenges with potential solutions that can pave the way for implementing this approach for clinical care.
ABSTRACT
BACKGROUND: Inherited cardiomyopathies present with broad variation of phenotype. Data are limited regarding genetic screening strategies and outcomes associated with predicted deleterious variants in cardiomyopathy-associated genes in the general population. OBJECTIVES: The authors aimed to determine the risk of mortality and composite cardiomyopathy-related outcomes associated with predicted deleterious variants in cardiomyopathy-associated genes in the UK Biobank. METHODS: Using whole exome sequencing data, variants in dilated, hypertrophic, and arrhythmogenic right ventricular cardiomyopathy-associated genes with at least moderate evidence of disease causality according to ClinGen Expert Panel curations were annotated using REVEL (≥0.65) and ANNOVAR (predicted loss-of-function) considering gene-disease mechanisms. Genotype-positive and genotype-negative groups were compared using time-to-event analyses for the primary (all-cause mortality) and secondary outcomes (diagnosis of cardiomyopathy; composite outcome of diagnosis of cardiomyopathy, heart failure, arrhythmia, stroke, and death). RESULTS: Among 200,619 participants (age at recruitment 56.46 ± 8.1 years), 5,292 (2.64%) were found to host ≥1 predicted deleterious variants in cardiomyopathy-associated genes (CMP-G+). After adjusting for age and sex, CMP-G+ individuals had higher risk for all-cause mortality (HR: 1.13 [95% CI: 1.01-1.25]; P = 0.027), increased risk for being diagnosed with cardiomyopathy later in life (HR: 5.75 [95% CI: 4.58-7.23]; P < 0.0001), and elevated risk for composite outcome (HR: 1.29 [95% CI: 1.20-1.39]; P < 0.0001) than CMP-G- individuals. The higher risk for being diagnosed with cardiomyopathy and composite outcomes in the genotype-positive subjects remained consistent across all cardiomyopathy subgroups. CONCLUSIONS: Adults with predicted deleterious variants in cardiomyopathy-associated genes exhibited a slightly higher risk of mortality and a significantly increased risk of developing cardiomyopathy, and cardiomyopathy-related composite outcomes, in comparison with genotype-negative controls.
ABSTRACT
Estrogen replacement increases both the number of dendritic spines and the density of axospinous synapses in the hippocampal CA1 region in young rats, yet this is attenuated in aged rats. The estrogen receptor-alpha (ER-alpha) is localized within select spines of CA1 pyramidal cells in young animals and thus may be involved locally in this process. The present study investigated the effects of estrogen on the ultrastructural distribution of ER-alpha in the CA1 of young (3-4 months) and aged (22-23 months) Sprague Dawley rats using postembedding immunogold electron microscopy. Within dendritic spines, most ER-alpha immunoreactivity (IR) was seen in plasmalemmal and cytoplasmic regions of spine heads, with a smaller proportion within 60 nm of the postsynaptic density. In presynaptic terminals, ER-alpha-IR was clustered and often associated with synaptic vesicles. Significant effects of both aging and estrogen were observed. Quantitative analysis revealed that nonsynaptic pools of ER-alpha-IR within the presynaptic and postsynaptic compartments were decreased (35 and 27%, respectively) in the young estrogen-replaced animals compared with those that received vehicle. Such localized regulation of ER-alpha in response to circulating estrogen levels might directly affect synaptic signaling in CA1 pyramidal cells. No estrogen treatment-related differences were observed in the aged animals. However, 50% fewer spines contained ER-alpha in the aged compared with young hippocampus. These data suggest that the decreased responsiveness of hippocampal synapses to estrogen in aged animals may result from age-related decrements in ER-alpha levels and its subcellular localization vis-à-vis the synapse. Such a role for spinous ER-alpha has important implications for age-related attenuation of estrogen-induced hippocampal plasticity.
Subject(s)
Aging/metabolism , Estrogens/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Receptors, Estrogen/metabolism , Age Factors , Animals , Cell Compartmentation , Cell Surface Extensions/metabolism , Cell Surface Extensions/ultrastructure , Estrogen Receptor alpha , Female , Hippocampus/ultrastructure , Immunohistochemistry , Microscopy, Immunoelectron , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Ovariectomy , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/ultrastructure , Rats , Rats, Sprague-Dawley , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructureABSTRACT
Estrogen interacts with N-methyl-D-aspartate (NMDA) receptors to regulate multiple aspects of morphological and functional plasticity. In hippocampus, estrogen increases both dendritic spine density and synapse number, and NMDA antagonists block these effects. Thus, estrogen-mediated hippocampal plasticity may be of particular importance in the context of age-related changes in endocrine status and cognitive performance. NR1 levels per synapse are increased in CA1 by estrogen in aged rats but not young rats, although no information is available on estrogen-induced synaptic alterations in other NMDA receptor subunits that might impact function. Therefore, the present study was designed to investigate the effect of estrogen on the synaptic and subsynaptic distributions of the NMDA receptor subunits, NR2A and NR2B in CA1 pyramidal cells, within the context of aging. Our results demonstrated that the overall synaptic levels of NR2A and NR2B are similar in young and aged female rats, regardless of estrogen treatment. However, in the aged CA1, estrogen restores NR2B levels back to young levels in the lateral portions of the active synaptic zone. Thus, estrogen may impact the mobility of NMDA receptors across the synapse and, in the process, restore a more youthful synaptic profile. These findings have important implications for the mechanism of estrogen-induced alterations in NMDA receptor-mediated processes, particularly in the context of aging.