Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34140410

ABSTRACT

We previously described a new osteogenic growth factor, osteolectin/Clec11a, which is required for the maintenance of skeletal bone mass during adulthood. Osteolectin binds to Integrin α11 (Itga11), promoting Wnt pathway activation and osteogenic differentiation by leptin receptor+ (LepR+) stromal cells in the bone marrow. Parathyroid hormone (PTH) and sclerostin inhibitor (SOSTi) are bone anabolic agents that are administered to patients with osteoporosis. Here we tested whether osteolectin mediates the effects of PTH or SOSTi on bone formation. We discovered that PTH promoted Osteolectin expression by bone marrow stromal cells within hours of administration and that PTH treatment increased serum osteolectin levels in mice and humans. Osteolectin deficiency in mice attenuated Wnt pathway activation by PTH in bone marrow stromal cells and reduced the osteogenic response to PTH in vitro and in vivo. In contrast, SOSTi did not affect serum osteolectin levels and osteolectin was not required for SOSTi-induced bone formation. Combined administration of osteolectin and PTH, but not osteolectin and SOSTi, additively increased bone volume. PTH thus promotes osteolectin expression and osteolectin mediates part of the effect of PTH on bone formation.


Subject(s)
Hematopoietic Cell Growth Factors/metabolism , Lectins, C-Type/metabolism , Osteogenesis/drug effects , Parathyroid Hormone/pharmacology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cancellous Bone/drug effects , Cancellous Bone/pathology , Female , Hematopoietic Cell Growth Factors/blood , Hematopoietic Cell Growth Factors/deficiency , Humans , Lectins, C-Type/blood , Lectins, C-Type/deficiency , Mice, Inbred C57BL , Organ Size/drug effects , Osteoporosis/blood , Premenopause/blood , Wnt Signaling Pathway/drug effects
2.
Osteoporos Int ; 34(8): 1477-1489, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37204454

ABSTRACT

Pregnancy and lactation associated osteoporosis is a rare and often severe osteoporosis presentation. Little information is available about etiology, clinical characteristics, risk factors and predictors of severity. Using an anonymized questionnaire, we defined clinical characteristics and potential risk factors for disease severity in PLO including primiparity, heparin exposure and celiac disease. PURPOSE: Pregnancy and lactation associated osteoporosis (PLO) is a rare form of early-onset osteoporosis in which young women present with fractures, usually multiple vertebral fractures, during late pregnancy or lactation. Little information is available about etiology, clinical characteristics, risk factors and predictors of disease severity. METHODS: PLO patients were recruited to complete an anonymized online questionnaire. Disease severity was defined as total number of fractures during or after the first pregnancy associated with a fracture(s). Analyses related disease severity to potential predictors including diseases/conditions or medication exposures. RESULTS: 177 completed surveys were received between 5/29/2018 and 1/12/2022. Average age at initial PLO fracture event was 32 ± 5 years. The majority were primiparous with singleton pregnancy and 79% fractured during lactation. Subjects reported 4.7 ± 2.7 total PLO fractures, with 48% reporting ≥ 5 fractures. Vertebral fractures, reported by 164/177 responders (93%), were the most common fracture type. Conditions and medications most commonly reported included vitamin D deficiency, amenorrhea unrelated to pregnancy, nephrolithiasis, celiac disease (CD), oral steroid use, heparin products during pregnancy and progestin only contraceptive after pregnancy. CD and heparins exposure during pregnancy were significantly related to disease severity. CONCLUSION: This is the largest study characterizing clinical features of PLO to date. The large number of participants and broad range of clinical and fracture characteristics queried has yielded novel information on the characteristics of PLO and potential risk factors for its severity, including primiparity, exposure to heparin and CD. These findings provide important preliminary data that can help target future mechanistic investigations.


Subject(s)
Celiac Disease , Osteoporosis , Pregnancy Complications , Spinal Fractures , Pregnancy , Humans , Female , Adult , Bone Density , Celiac Disease/complications , Osteoporosis/etiology , Osteoporosis/complications , Lactation , Pregnancy Complications/epidemiology , Pregnancy Complications/drug therapy , Spinal Fractures/etiology , Spinal Fractures/complications , Parity
3.
4.
JAMA ; 328(16): 1624-1636, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36282253

ABSTRACT

Importance: Hypercalcemia affects approximately 1% of the worldwide population. Mild hypercalcemia, defined as total calcium of less than 12 mg/dL (<3 mmol/L) or ionized calcium of 5.6 to 8.0 mg/dL (1.4-2 mmol/L), is usually asymptomatic but may be associated with constitutional symptoms such as fatigue and constipation in approximately 20% of people. Hypercalcemia that is severe, defined as total calcium of 14 mg/dL or greater (>3.5 mmol/L) or ionized calcium of 10 mg/dL or greater (≥2.5 mmol/L) or that develops rapidly over days to weeks, can cause nausea, vomiting, dehydration, confusion, somnolence, and coma. Observations: Approximately 90% of people with hypercalcemia have primary hyperparathyroidism (PHPT) or malignancy. Additional causes of hypercalcemia include granulomatous disease such as sarcoidosis, endocrinopathies such as thyroid disease, immobilization, genetic disorders, and medications such as thiazide diuretics and supplements such as calcium, vitamin D, or vitamin A. Hypercalcemia has been associated with sodium-glucose cotransporter 2 protein inhibitors, immune checkpoint inhibitors, denosumab discontinuation, SARS-CoV-2, ketogenic diets, and extreme exercise, but these account for less than 1% of causes. Serum intact parathyroid hormone (PTH), the most important initial test to evaluate hypercalcemia, distinguishes PTH-dependent from PTH-independent causes. In a patient with hypercalcemia, an elevated or normal PTH concentration is consistent with PHPT, while a suppressed PTH level (<20 pg/mL depending on assay) indicates another cause. Mild hypercalcemia usually does not need acute intervention. If due to PHPT, parathyroidectomy may be considered depending on age, serum calcium level, and kidney or skeletal involvement. In patients older than 50 years with serum calcium levels less than 1 mg above the upper normal limit and no evidence of skeletal or kidney disease, observation may be appropriate. Initial therapy of symptomatic or severe hypercalcemia consists of hydration and intravenous bisphosphonates, such as zoledronic acid or pamidronate. In patients with kidney failure, denosumab and dialysis may be indicated. Glucocorticoids may be used as primary treatment when hypercalcemia is due to excessive intestinal calcium absorption (vitamin D intoxication, granulomatous disorders, some lymphomas). Treatment reduces serum calcium and improves symptoms, at least transiently. The underlying cause of hypercalcemia should be identified and treated. The prognosis for asymptomatic PHPT is excellent with either medical or surgical management. Hypercalcemia of malignancy is associated with poor survival. Conclusions and Relevance: Mild hypercalcemia is typically asymptomatic, while severe hypercalcemia is associated with nausea, vomiting, dehydration, confusion, somnolence, and coma. Asymptomatic hypercalcemia due to primary hyperparathyroidism is managed with parathyroidectomy or observation with monitoring, while severe hypercalcemia is typically treated with hydration and intravenous bisphosphonates.


Subject(s)
Hypercalcemia , Hyperparathyroidism, Primary , Parathyroid Hormone , Humans , Calcium/blood , Coma/etiology , COVID-19/complications , Dehydration/etiology , Dehydration/therapy , Denosumab/adverse effects , Hypercalcemia/blood , Hypercalcemia/etiology , Hypercalcemia/therapy , Hyperparathyroidism, Primary/blood , Hyperparathyroidism, Primary/complications , Hyperparathyroidism, Primary/diagnosis , Hyperparathyroidism, Primary/therapy , Immune Checkpoint Inhibitors/adverse effects , Nausea/etiology , Neoplasms/blood , Neoplasms/complications , Pamidronate/therapeutic use , Parathyroid Hormone/blood , SARS-CoV-2 , Sleepiness , Sodium Chloride Symporter Inhibitors/adverse effects , Vitamin A/adverse effects , Vitamin D/adverse effects , Vomiting/etiology , Zoledronic Acid/therapeutic use
6.
MMWR Morb Mortal Wkly Rep ; 70(17): 632-638, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33914721

ABSTRACT

Early studies suggest that COVID-19 vaccines protect against severe illness (1); however, postvaccination SARS-CoV-2 infections (i.e., breakthrough infections) can occur because COVID-19 vaccines do not offer 100% protection (2,3). Data evaluating the occurrence of breakthrough infections and impact of vaccination in decreasing transmission in congregate settings are limited. Skilled nursing facility (SNF) residents and staff members have been disproportionately affected by SARS-CoV-2, the virus that causes COVID-19 (4,5), and were prioritized for COVID-19 vaccination (6,7). Starting December 28, 2020, all 78 Chicago-based SNFs began COVID-19 vaccination clinics over several weeks through the federal Pharmacy Partnership for Long-Term Care Program (PPP).† In February 2021, through routine screening, the Chicago Department of Public Health (CDPH) identified a SARS-CoV-2 infection in a SNF resident >14 days after receipt of the second dose of a two-dose COVID-19 vaccination series. SARS-CoV-2 cases, vaccination status, and possible vaccine breakthrough infections were identified by matching facility reports with state case and vaccination registries. Among 627 persons with SARS-CoV-2 infection across 75 SNFs since vaccination clinics began, 22 SARS-CoV-2 infections were identified among 12 residents and 10 staff members across 15 facilities ≥14 days after receiving their second vaccine dose (i.e., breakthrough infections in fully vaccinated persons). Nearly two thirds (14 of 22; 64%) of persons with breakthrough infections were asymptomatic; two residents were hospitalized because of COVID-19, and one died. No facility-associated secondary transmission occurred. Although few SARS-CoV-2 infections in fully vaccinated persons were observed, these cases demonstrate the need for SNFs to follow recommended routine infection prevention and control practices and promote high vaccination coverage among SNF residents and staff members.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , Occupational Diseases/epidemiology , Skilled Nursing Facilities , Adult , Aged , Asymptomatic Diseases/epidemiology , COVID-19/prevention & control , Chicago/epidemiology , Female , Humans , Immunization Schedule , Infection Control/organization & administration , Male , Middle Aged , Occupational Diseases/prevention & control
7.
J Struct Biol ; 211(3): 107556, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32619592

ABSTRACT

X-linked hypophosphatemia (XLH) caused by PHEX mutations results in elevated serum FGF23 levels, renal phosphate wasting and low 1,25-dihydroxyvitamin D. The glycophosphoprotein osteopontin, a potent inhibitor of mineralization normally degraded by PHEX, accumulates within the bone matrix. Conventional therapy consisting of supplementation with phosphate and vitamin D analogs is burdensome and the effects on bone material poorly characterized. We analyzed transiliac bone biopsies from four adult patients, two of them severely affected due to no diagnosis and no treatment until adulthood. We used light microscopy, qBEI and FTIRI to study histology, histomorphometry, bone mineralization density distribution, properties of the organic matrix and size of hypomineralized periosteocytic lesions. Non-treatment resulted in severe osteomalacia, twice the amount of mineralized trabecular volume, multiple osteon-like perforations, continuity of lamellae from mineralized to unmineralized areas and distinctive patches of woven bone. Periosteocytic lesions were larger than in treated patients. The latter had nearly normal osteoid thicknesses, although surface was still elevated. The median calcium content of the matrix was always within normal range, although the percentage of lowly mineralized bone areas was highly increased in non-treated patients, resulting in a marked heterogeneity in mineralization. Divalent collagen cross-links were evident independently of the mineral content of the matrix. Broad osteoid seams lacked measurable pyridinoline, a mature trivalent cross-link and exhibited considerable acidic lipid content, typically found in matrix vesicles. Based on our results, we propose a model that possibly integrates the relationship between the observed mineralization disturbances, FGF23 secretion and the known osteopontin accumulation in XLH.


Subject(s)
Bone and Bones/diagnostic imaging , Familial Hypophosphatemic Rickets/diagnostic imaging , Familial Hypophosphatemic Rickets/pathology , Adult , Bone Density , Bone Matrix/diagnostic imaging , Bone Matrix/pathology , Bone and Bones/pathology , Calcitriol/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factor-23 , Genetic Diseases, X-Linked/genetics , Humans , Male , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Phosphates/administration & dosage , Phosphates/therapeutic use , Retrospective Studies , Spectroscopy, Fourier Transform Infrared
8.
J Biomech Eng ; 141(4)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30703208

ABSTRACT

The high-resolution peripheral quantitative computed tomography (HR-pQCT) provides unprecedented visualization of bone microstructure and the basis for constructing patient-specific microfinite element (µFE) models. Based on HR-pQCT images, we have developed a plate-and-rod µFE (PR µFE) method for whole bone segments using individual trabecula segmentation (ITS) and an adaptive cortical meshing technique. In contrast to the conventional voxel approach, the complex microarchitecture of the trabecular compartment is simplified into shell and beam elements based on the trabecular plate-and-rod configuration. In comparison to voxel-based µFE models of µCT and measurements from mechanical testing, the computational and experimental gold standards, nonlinear analyses of stiffness and yield strength using the HR-pQCT-based PR µFE models demonstrated high correlation and accuracy. These results indicated that the combination of segmented trabecular plate-rod morphology and adjusted cortical mesh adequately captures mechanics of the whole bone segment. Meanwhile, the PR µFE modeling approach reduced model size by nearly 300-fold and shortened computation time for nonlinear analysis from days to within hours, permitting broader clinical application of HR-pQCT-based nonlinear µFE modeling. Furthermore, the presented approach was tested using a subset of radius and tibia HR-pQCT scans of patients with prior vertebral fracture in a previously published study. Results indicated that yield strength for radius and tibia whole bone segments predicted by the PR µFE model was effective in discriminating vertebral fracture subjects from nonfractured controls. In conclusion, the PR µFE model of HR-pQCT images accurately predicted mechanics for whole bone segments and can serve as a valuable clinical tool to evaluate musculoskeletal diseases.

9.
J Biomech Eng ; 141(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31260520

ABSTRACT

High-resolution peripheral quantitative computed tomography (HR-pQCT) is a promising imaging modality that provides an in vivo three-dimensional (3D) assessment of bone microstructure by scanning fixed regions of the distal radius and tibia. However, how microstructural parameters and mechanical analysis based on these segment scans correlate to whole distal radius and tibia mechanics are not well-characterized. On 26 sets of cadaveric radius and tibia, HR-pQCT scans were performed on the standard scan segment, a segment distal to the standard segment, and a segment proximal to the standard segment. Whole distal radius and tibia stiffness were determined through mechanical testing. Segment bone stiffness was estimated using linear finite element (FE) analysis based on segment scans. Standard morphological and individual trabecula segmentation (ITS) analyses were used to estimate microstructural properties. Significant variations in microstructural parameters were observed among segments at both sites. Correlation to whole distal radius and tibia stiffness was moderate for microstructural parameters at the standard segment, but correlation was significantly increased for FE-predicted segment bone stiffness based on standard segment scans. Similar correlation strengths were found between FE-predicted segment bone stiffness and whole distal radius and tibia stiffness. Additionally, microstructural parameters at the distal segment had higher correlation to whole distal radius and tibia stiffness than at standard or proximal segments. Our results suggest that FE-predicted segment stiffness is a better predictor of whole distal radius and tibia stiffness for clinical HR-pQCT analysis and that microstructural parameters at the distal segment are more highly correlated with whole distal radius and tibia stiffness than at the standard or proximal segments.

10.
Curr Osteoporos Rep ; 16(4): 519-529, 2018 08.
Article in English | MEDLINE | ID: mdl-29951870

ABSTRACT

PURPOSE OF REVIEW: To summarize reports published since the 2013 American Society of Bone and Mineral Research Task Force Report on atypical femoral fractures (AFF). RECENT FINDINGS: The absolute incidence of AFFs remains low. AFFs are primarily associated with prolonged bisphosphonate (BP) exposure, but have also been reported in unexposed patients and those receiving denosumab for osteoporosis and metastatic bone disease. Asians may be more susceptible to AFFs. Lateral femoral bowing and varus hip geometry, which increase loading forces on the lateral femoral cortex, may increase AFF risk. Altered bone material properties associated with BP therapy may predispose to AFFs by permitting initiation and increasing propagation of micro-cracks. Relevant genetic mutations have been reported in patients with AFFs. Single X-ray absorptiometry femur scans permit early detection of incomplete and/or asymptomatic AFFs. Orthopedists recommend intramedullary rods for complete AFFs and for incomplete, radiologically advanced AFFs associated with pain and/or marrow edema on MRI. Teriparatide may advance AFF healing but few data support its efficacy. Greater understanding of biological and genetic predisposition to AFF may allow characterization of individual risk prior to initiating osteoporosis therapy and help allay fear in those at low risk for this complication, which remains rare in comparison to the osteoporotic fractures prevented by antiresorptive therapy.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Denosumab/therapeutic use , Diphosphonates/therapeutic use , Femoral Fractures/epidemiology , Fracture Fixation, Intramedullary , Osteoporosis/drug therapy , Teriparatide/therapeutic use , Absorptiometry, Photon , Asian People , Femoral Fractures/ethnology , Femoral Fractures/physiopathology , Femoral Fractures/therapy , Genetic Predisposition to Disease , Humans , Incidence , Osteoporotic Fractures/prevention & control , Risk Factors
12.
Pattern Recognit Lett ; 76: 83-89, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27175044

ABSTRACT

Trabecular plate and rod microstructure plays a dominant role in the apparent mechanical properties of trabecular bone. With high-resolution computed tomography (CT) images, digital topological analysis (DTA) including skeletonization and topological classification was applied to transform the trabecular three-dimensional (3D) network into surface and curve skeletons. Using the DTA-based topological analysis and a new reconstruction/recovery scheme, individual trabecula segmentation (ITS) was developed to segment individual trabecular plates and rods and quantify the trabecular plate- and rod-related morphological parameters. High-resolution peripheral quantitative computed tomography (HR-pQCT) is an emerging in vivo imaging technique to visualize 3D bone microstructure. Based on HR-pQCT images, ITS was applied to various HR-pQCT datasets to examine trabecular plate- and rod-related microstructure and has demonstrated great potential in cross-sectional and longitudinal clinical applications. However, the reproducibility of ITS has not been fully determined. The aim of the current study is to quantify the precision errors of ITS plate-rod microstructural parameters. In addition, we utilized three different frequently used contour techniques to separate trabecular and cortical bone and to evaluate their effect on ITS measurements. Overall, good reproducibility was found for the standard HR-pQCT parameters with precision errors for volumetric BMD and bone size between 0.2%-2.0%, and trabecular bone microstructure between 4.9%-6.7% at the radius and tibia. High reproducibility was also achieved for ITS measurements using all three different contour techniques. For example, using automatic contour technology, low precision errors were found for plate and rod trabecular number (pTb.N, rTb.N, 0.9% and 3.6%), plate and rod trabecular thickness (pTb.Th, rTb.Th, 0.6% and 1.7%), plate trabecular surface (pTb.S, 3.4%), rod trabecular length (rTb.ℓ, 0.8%), and plate-plate junction density (P-P Junc.D, 2.3%) at the tibia. The precision errors at the radius were similar to those at the tibia. In addition, precision errors were affected by the contour technique. At the tibia, precision error by the manual contour method was significantly different from automatic and standard contour methods for pTb.N, rTb.N and rTb.Th. Precision error using the manual contour method was also significantly different from the standard contour method for rod trabecular number (rTb.N), rod trabecular thickness (rTb.Th), rod-rod and plate-rod junction densities (R-R Junc.D and P-R Junc.D) at the tibia. At the radius, the precision error was similar between the three different contour methods. Image quality was also found to significantly affect the ITS reproducibility. We concluded that ITS parameters are highly reproducible, giving assurance that future cross-sectional and longitudinal clinical HR-pQCT studies are feasible in the context of limited sample sizes.

13.
Cancer Causes Control ; 26(2): 187-203, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25421379

ABSTRACT

PURPOSE: Studies of vitamin D-pathway genetic variants in relation to cancer risk have been inconsistent. We examined the associations between vitamin D-related genetic polymorphisms, plasma 25-hydroxyvitamin D [25(OH)D], and breast cancer risk. METHODS: In a population-based case-control study of 967 incident breast cancer cases and 993 controls, we genotyped 25 polymorphisms encoding the vitamin D receptor (VDR) gene, 1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1), and vitamin D-binding protein (GC) and measured plasma 25(OH)D. We used multivariable logistic regression to estimate adjusted odds ratios (ORs) and 95 % confidence intervals (CIs). RESULTS: Among CYP24A1 polymorphisms, rs6068816 was associated with a 72 % reduction in breast cancer risk (TT vs. CC, OR 0.28, 95 % CI 0.10-0.76; p trend = 0.01), but for rs13038432, the 46 % decrease included the null value (GG vs. AA, OR 0.54, 95 % CI 0.17-1.67; p trend = 0.03). Increased risk that included the null value was noted for CYP24A1 rs3787557 (CC vs. TT, OR 1.34, 95 % CI 0.92-1.89). The VDR polymorphism, TaqI (rs731236), was associated with a 26 % risk reduction (TT vs. CC, OR 0.74, 95 % CI 0.56-0.98; p trend = 0.01). For other polymorphisms, ORs were weak and included the null value. The inverse association for plasma 25(OH)D with breast cancer was more pronounced (OR 0.43, 95 % CI 0.27-0.68) among women with the common allele for CYP24A1, rs927650 (p for interaction on a multiplicative scale = 0.01). CONCLUSION: Breast cancer risk may be associated with specific vitamin D-related polymorphisms, particularly CYP24A1. Genetic variation in the vitamin D pathway should be considered when designing potential intervention strategies with vitamin D supplementation.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Breast Neoplasms/genetics , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Vitamin D-Binding Protein/genetics , Vitamin D3 24-Hydroxylase/genetics , Vitamin D/analogs & derivatives , Adult , Aged , Breast Neoplasms/blood , Calcifediol/blood , Case-Control Studies , Female , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Middle Aged , Multivariate Analysis , Odds Ratio , Risk , Steroid Hydroxylases/genetics , Vitamin D/blood , Vitamin D/genetics , Vitamins
14.
J Am Soc Nephrol ; 25(6): 1331-41, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24511131

ABSTRACT

The use of early corticosteroid withdrawal (ECSW) protocols after kidney transplantation has become common, but the effects on fracture risk and bone quality are unclear. We enrolled 47 first-time adult transplant recipients managed with ECSW into a 1-year study to evaluate changes in bone mass, microarchitecture, biomechanical competence, and remodeling with dual energy x-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT), parathyroid hormone (PTH) levels, and bone turnover markers obtained at baseline and 3, 6, and 12 months post-transplantation. Compared with baseline, 12-month areal bone mineral density by DXA did not change significantly at the spine and hip, but it declined significantly at the 1/3 and ultradistal radii (2.2% and 2.9%, respectively; both P<0.001). HRpQCT of the distal radius revealed declines in cortical area, density, and thickness (3.9%, 2.1%, and 3.1%, respectively; all P<0.001), trabecular density (4.4%; P<0.001), and stiffness and failure load (3.1% and 3.5%, respectively; both P<0.05). Findings were similar at the tibia. Increasing severity of hyperparathyroidism was associated with increased cortical losses. However, loss of trabecular bone and bone strength were most severe at the lowest and highest PTH levels. In summary, ECSW was associated with preservation of bone mineral density at the central skeleton; however, it was also associated with progressive declines in cortical and trabecular bone density at the peripheral skeleton. Cortical decreases related directly to PTH levels, whereas the relationship between PTH and trabecular bone decreases was bimodal. Studies are needed to determine whether pharmacologic agents that suppress PTH will prevent cortical and trabecular losses and post-transplant fractures.


Subject(s)
Bone Diseases/chemically induced , Dexamethasone/adverse effects , Graft Rejection/drug therapy , Hip Fractures/chemically induced , Kidney Failure, Chronic/surgery , Kidney Transplantation/adverse effects , Adult , Bone Density/drug effects , Bone Diseases/diagnostic imaging , Bone Diseases/epidemiology , Bone Remodeling/drug effects , Dexamethasone/administration & dosage , Female , Follow-Up Studies , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Hip Fractures/diagnostic imaging , Hip Fractures/epidemiology , Humans , Kidney Failure, Chronic/epidemiology , Kidney Transplantation/statistics & numerical data , Longitudinal Studies , Male , Middle Aged , Radiography , Risk Factors , Substance Withdrawal Syndrome
15.
Endocr Res ; 40(2): 106-19, 2015.
Article in English | MEDLINE | ID: mdl-25803304

ABSTRACT

The 2014 Santa Fe Bone Symposium provided a setting for the presentation and discussion of the clinical relevance of recent advances in the fields of osteoporosis and metabolic bone disease. The format included oral presentations of abstracts by endocrinology fellows, plenary lectures, panel discussions and breakout sessions, with ample opportunities for informal discussions before and after scheduled events. Topics addressed in these proceedings included a review of the important scientific publications in the past year, fracture prevention in patients with dysmobility and immobility, fracture liaison services for secondary fracture prevention, management of pre-menopausal osteoporosis, the role of bone microarchitecture in determining bone strength, measurement of microarchitecture in clinical practice and methods to improve the quality of bone density testing. This is a report of the proceedings of the 2014 Santa Fe Bone Symposium.


Subject(s)
Bone and Bones , Endocrinology/organization & administration , Endocrinology/trends , Osteoporosis , Absorptiometry, Photon , Bone Density , Bone and Bones/physiology , Female , Fractures, Bone/etiology , Fractures, Bone/therapy , Humans , Osteoporosis/complications , Osteoporosis/diagnosis , Osteoporosis/therapy , Osteoporosis, Postmenopausal/therapy
16.
JBMR Plus ; 8(3): ziae007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38505220

ABSTRACT

High-resolution peripheral quantitative computed tomography (HR-pQCT) has been used for in vivo 3D visualization of trabecular microstructure. Second-generation HR-pQCT (HR-pQCT II) has been shown to have good agreement with first generation HR-pQCT (HR-pQCT I). Advanced Individual Trabecula Segmentation (ITS) decomposes the trabecula network into individual plates and rods. ITS based on HR-pQCT I showed a strong correlation to ITS based on micro-computed tomography (µCT) and identified trabecular changes in metabolic bone diseases. ITS based on HR-pQCT II has new potential because of the enhanced resolution but has yet to be validated. The objective of this study was to assess the agreement between ITS based on HR-pQCT I, HR-pQCT II, and µCT to assess the capability of ITS on HR-pQCT images as a tool for studying bone structure. Freshly frozen tibia and radius bones were scanned in the distal region using HR-pQCT I at 82 µm, HR-pQCT II at 60.7 µm, and µCT at 37 µm. Images were registered, binarized, and ITS analysis was performed. Bone volume fraction (pBV/TV, rBV/TV), number density (pTb.N, rTb.N), thickness (pTb.Th, rTb.Th), and plate-to-rod (PR) ratio (pBV/rBV) of trabecular plates and rods were obtained. Paired Student's t-tests with post hoc Bonferroni analysis were used to examine the differences. Linear regression was used to determine the correlation coefficient. The HR-pQCT I parameters were different from the µCT measurements. The HR-pQCT II parameters were different from the µCT measurements except for rTb.N, and the HR-pQCT I parameters were different from the HR-pQCT II measurements except for pTb.Th. The strong correlation between HR-pQCT II and µCT microstructural analysis (R2 = 0.55-0.94) suggests that HR-pQCT II can be used to assess changes in plate and rod microstructure and that values from HR-pQCT I can be corrected.

17.
Article in English | MEDLINE | ID: mdl-38605469

ABSTRACT

CONTEXT: We previously reported that sequential teriparatide followed by denosumab substantially increases BMD in premenopausal idiopathic osteoporosis (PremenIOP). OBJECTIVE: To determine whether administration of bisphosphonates after denosumab cessation is associated with stable BMD in PremenIOP. DESIGN: Open-label extension study. PARTICIPANTS: 24 PremenIOP Teriparatide-Denosumab Study participants. INTERVENTIONS: Oral alendronate (ALN), 70mg weekly, or IV zoledronic acid (ZOL), 5mg once (patient choice), was administered 7 months (M) after final denosumab dose. OUTCOMES: BMD by DXA and serum C-telopeptide (CTX) q6M; vertebral fracture assessment (VFA) and HR-pQCT q12M. RESULTS: 24 women with PremenIOP (aged 43 ± 8 years), severely affected with low trauma adult fractures (range 0-12; 9 with vertebral fractures) and/or very low BMD, had large BMD increases on sequential teriparatide-denosumab (spine: 25 ± 9%; total hip: 11 ± 6%). During the Bisphosphonate Extension, mean BMD and CTX changes in the entire group were small and not statistically significant at 6 or 12M.Women choosing ZOL (n = 6) versus ALN (n = 18) did not differ by baseline age, BMI, fractures, BMD, or CTX. On ZOL, there were small LSBMD declines and CTX increases, particularly between 6M and 12M, while greater stability was observed on ALN.Changes in BMD and CTX did not differ by duration of denosumab (36M vs <36M) or between 20 women who remained premenopausal and 4 who transitioned into menopause. Higher pre-teriparatide CTX, likely reflecting baseline remodeling status, predicted more spine and hip bone loss. No new vertebral (clinical or VFA screening) or non-vertebral fractures occurred. CONCLUSION: BMD remained stable in women with PremenIOP who received bisphosphonates after sequential teriparatide-denosumab therapy.

18.
J Bone Miner Res ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887013

ABSTRACT

Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. While structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate, and subchondral trabecular bone using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified subchondral bone plate microstructure, plate-and-rod morphological properties of the subchondral trabecular bone using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while OARSI score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the subchondral bone plate, thickness and TMD were higher in moderate and severe OA regions. Tissue modulus of subchondral trabecular bone was lower in moderate OA regions despite a thicker and more mineralized subchondral bone plate; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and subchondral trabecular bone properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.


Knee osteoarthritis (OA) is a complex condition involving the degradation of joint tissues. To better understand OA progression, we investigated the interplay between different components of the joint. Our study focused on how cartilage, subchondral bone plate, and subchondral trabecular bone interact in human knee OA samples. We observed distinct changes in these tissues in moderate and severe OA regions compared to healthy joints. In moderate to severe OA, we found that cartilage thickness decreased while the subchondral bone plate thickened. Interestingly, the strength of the subchondral trabecular bone decreased only in moderate OA regions, not in severe OA. Moreover, our analysis revealed strong correlations between cartilage and subchondral trabecular bone properties in healthy joints and moderate OA regions. However, these correlations were absent in severe OA regions, indicating a disruption in the usual relationship between these tissues. Overall, our findings shed light on the structural and biomechanical changes occurring within the knee joint in OA. Understanding these changes may offer insights into potential therapeutic strategies for managing OA.

19.
J Endocr Soc ; 8(6): bvae079, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38715589

ABSTRACT

Context: Fracture rate is increased in patients with active acromegaly and those in remission. Abnormalities of bone microstructure are present in patients with active disease and persist despite biochemical control after surgery. Effects of treatment with the GH receptor antagonist pegvisomant on bone microstructure were unknown. Methods: We studied 25 patients with acromegaly (15 men, 10 women). In 20, we evaluated areal bone mineral density (BMD) by dual-energy X-ray absorptiometry and bone turnover markers (BTMs) longitudinally, before and during pegvisomant treatment. After long-term pegvisomant in 17, we cross-sectionally assessed volumetric BMD, microarchitecture, stiffness, and failure load of the distal radius and tibia using high-resolution peripheral quantitative computed tomography (HRpQCT) and compared these results to those of healthy controls and 2 comparison groups of nonpegvisomant-treated acromegaly patients, remission, and active disease, matched for other therapies and characteristics. Results: In the longitudinal study, areal BMD improved at the lumbar spine but decreased at the hip in men after a median ∼7 years of pegvisomant. In the cross-sectional study, patients on a median ∼9 years of pegvisomant had significantly larger bones, lower trabecular and cortical volumetric density, and disrupted trabecular microarchitecture compared to healthy controls. Microstructure was similar in the pegvisomant and acromegaly comparison groups. BTMs were lowered, then stable over time. Conclusion: In this, the first study to examine bone microstructure in pegvisomant-treated acromegaly, we found deficits in volumetric BMD and microarchitecture of the peripheral skeleton. BTM levels remained stable with long-term therapy. Deficits in bone quality identified by HRpQCT may play a role in the pathogenesis of fragility in treated acromegaly.

20.
Kidney Int ; 83(3): 471-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23283136

ABSTRACT

Both type 1 diabetes mellitus and end-stage renal disease are associated with increased fracture risk, likely because of metabolic abnormalities that reduce bone strength. Simultaneous pancreas-kidney transplantation is a treatment of choice for patients with both disorders, yet the effects of simultaneous pancreas-kidney and kidney transplantation alone on post-transplantation fracture risk are unknown. From the United States Renal Data System, we identified 11,145 adults with type 1 diabetes undergoing transplantation, of whom 4933 had a simultaneous pancreas-kidney transplant and 6212 had a kidney-alone transplant between 2000 and 2006. Post-transplantation fractures resulting in hospitalization were identified from discharge codes. Time to first fracture was modeled and propensity score adjustment was used to balance covariates between groups. Fractures occurred in significantly fewer (4.7%) of pancreas-kidney compared with kidney-alone transplant (5.9%) cohorts. After gender stratification and adjustment for fracture covariates, pancreas-kidney transplantation was associated with a significant 31% reduction in fracture risk in men (hazard risk 0.69). Older age, white race, prior dialysis, and pre-transplantation fracture were also associated with increased fracture risk. Prospective studies are needed to determine the gender-specific mechanisms by which pancreas-kidney transplantation reduces fracture risk in men.


Subject(s)
Diabetes Mellitus, Type 1/complications , Fractures, Bone/etiology , Kidney Transplantation/adverse effects , Pancreas Transplantation , Adult , Female , Fractures, Bone/epidemiology , Hospitalization , Humans , Incidence , Kidney Transplantation/mortality , Male , Middle Aged , Pancreas Transplantation/mortality , Renal Insufficiency, Chronic/complications , Risk , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL