ABSTRACT
Mushroom-forming fungi in the order Agaricales represent an independent origin of bioluminescence in the tree of life; yet the diversity, evolutionary history, and timing of the origin of fungal luciferases remain elusive. We sequenced the genomes and transcriptomes of five bonnet mushroom species (Mycena spp.), a diverse lineage comprising the majority of bioluminescent fungi. Two species with haploid genome assemblies â¼150 Mb are among the largest in Agaricales, and we found that a variety of repeats between Mycena species were differentially mediated by DNA methylation. We show that bioluminescence evolved in the last common ancestor of mycenoid and the marasmioid clade of Agaricales and was maintained through at least 160 million years of evolution. Analyses of synteny across genomes of bioluminescent species resolved how the luciferase cluster was derived by duplication and translocation, frequently rearranged and lost in most Mycena species, but conserved in the Armillaria lineage. Luciferase cluster members were coexpressed across developmental stages, with the highest expression in fruiting body caps and stipes, suggesting fruiting-related adaptive functions. Our results contribute to understanding a de novo origin of bioluminescence and the corresponding gene cluster in a diverse group of enigmatic fungal species.
Subject(s)
Agaricales/genetics , Evolution, Molecular , Fruiting Bodies, Fungal/genetics , Luminescence , Agaricales/chemistry , Base Sequence , Fruiting Bodies, Fungal/chemistry , Genome, Fungal/genetics , Luciferases/genetics , PhylogenyABSTRACT
Invasive species have impacted biodiversity all around the world. Among various ecosystems, islands are most vulnerable to these impacts due to their high ratio of endemism, highly specialized adaptation, and isolated and unique fauna. As with other subtropical islands, Taiwan faces constant risk of biological invasions and is currently ranked as one of the countries most affected by invasive amphibians and reptiles. In this paper, a comprehensive checklist of all known exotic amphibians and reptiles is provided, including twelve species which have successfully colonized Taiwan and six species with a controversial status. We provide an update on the knowledge of all these species including their distribution, colonization history, threats to native animals, and population trends based on literature records, fauna surveys, and data collected during invasive species eradication and control programs. A list of species with high invasive potentials is also provided. This study reports, for the first time, a comprehensive survey of invasive herpetofauna in Taiwan, which should provide a valuable reference to other regions which might suffer from similar invasion risk.