Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Cardiothorac Surg ; 19(1): 399, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937755

ABSTRACT

BACKGROUND: We aimed to assess the efficacy of the neutrophil elastase inhibitor, sivelestat, in the treatment of sepsis-induced acute respiratory distress syndrome (ARDS) and septic cardiomyopathy (SCM). METHODS: Between January 2019 and December 2021, we conducted a randomized trial on patients who had been diagnosed with sepsis-induced acute respiratory distress syndrome (ARDS) and septic cardiomyopathy (SCM) at Wuhan Union Hospital. The patients were divided into two groups by random envelop method, the Sivelestat group and the Control group. We measured the serum concentrations of Interleukin (IL)-6, IL-8, Tumor necrosis factor-α (TNF-α), and High-mobility group box 1 (HMGB1) at five time points, which were the baseline, 12 h, 24 h, 48 h, and 72 h after admission to the ICU. We evaluated the cardiac function by sonography and the heart rate variability (HRV) with 24-hour Holter recording between the time of admission to the intensive care unit (ICU) and 72 h after Sivelestat treatment. RESULTS: From January 2019 to December 2021, a total of 70 patients were included in this study. The levels of IL-6, IL-8, and TNF-α were significantly lower in the Sivelestat group at different time points (12 h, 24 h, 48 h, and 72 h). HMGB1 levels were significantly lower at 72 h after Sivelestat treatment (19.46 ± 2.63pg/mL vs. 21.20 ± 2.03pg/mL, P = 0.003). The stroke volume (SV), tricuspid annular plane systolic excursion (TAPSE), early to late diastolic transmitral flow velocity (E/A), early (e') and late (a') diastoles were significantly low in the Control group compared with the Sivelestat group. Tei index was high in the Control group compared with the Sivelestat group (0.60 ± 0.08 vs. 0.56 ± 0.07, P = 0.029). The result of HRV showed significant differences in standard deviation of normal-to-normal intervals (SDNN), low frequency (LF), and LF/HF (high frequency) between the two groups. CONCLUSIONS: Sivelestat can significantly reduce the levels of serum inflammatory factors, improve cardiac function, and reduce heart rate variability in patients with Sepsis-induced ARDS and SCM.


Subject(s)
Cardiomyopathies , Glycine , Respiratory Distress Syndrome , Sepsis , Sulfonamides , Humans , Male , Female , Glycine/analogs & derivatives , Glycine/therapeutic use , Cardiomyopathies/drug therapy , Cardiomyopathies/blood , Sepsis/drug therapy , Sepsis/complications , Sepsis/blood , Middle Aged , Respiratory Distress Syndrome/drug therapy , Sulfonamides/therapeutic use , Treatment Outcome , Aged , Serine Proteinase Inhibitors/therapeutic use
2.
Clin Transl Oncol ; 26(6): 1459-1466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38329609

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the impact of Doxorubicin, Epirubicin, and Liposomal Doxorubicin (Anthracycline) on cardiac function in osteosarcoma patients and analyze the factors influencing this effect. METHODS: A retrospective study was conducted on 165 osteosarcoma patients admitted to our hospital from January 2020 to December 2022. Based on the chemotherapy regimen, the patients were divided into two groups: the control group (n = 62) treated with Cisplatin and cyclophosphamide, and the observation group (n = 103) treated with Doxorubicin, Epirubicin, and Liposomal Doxorubicin (Anthracycline). The general records of both groups were analyzed, and left ventricular ejection fraction (LVEF) was evaluated through echocardiography before and after chemotherapy. Blood cTnT and CK-MB levels were measured using immunoluminescence. The incidence of adverse reactions during chemotherapy was also analyzed. Univariate analysis was performed to identify patients with cardiotoxic events, and multiple logistic regression analysis was done to study the effects of Doxorubicin, Epirubicin, Liposomal Doxorubicin, and their dosages on cardiotoxicity in patients. RESULTS: The general records between the two groups showed no significant differences (P > 0.05). However, at the fourth cycle of chemotherapy, the observation group exhibited a lower LVEF (P < 0.05), and a higher percentage of LVEF decrease compared to the control group (P < 0.05). Moreover, the observation group had higher levels of blood cTnT and CK-MB (P < 0.05). The incidence of cardiotoxicity in the observation group was also higher (P < 0.05), but no significant differences were seen in other adverse reaction rates (P > 0.05). The occurrence of cardiotoxicity was found to be related to the choice and dosage of chemotherapy drugs (P < 0.05), but not significantly correlated with age, sex, and mediastinal irradiation in patients (P > 0.05). Furthermore, the use of Doxorubicin, Epirubicin, and Liposomal Doxorubicin in chemotherapy, as well as an increase in their dosages, was found to elevate the risk of cardiotoxicity in osteosarcoma patients (P < 0.05). However, age, sex, and mediastinal radiation were not significantly associated with cardiotoxicity in osteosarcoma patients (P > 0.05). CONCLUSION: We demonstrated that Doxorubicin, Epirubicin, Liposomal Doxorubicin (Anthracycline), and other drugs adversely affected cardiac function in osteosarcoma patients, increasing the risk of cardiac toxicity. Therefore, close monitoring of cardiac function during chemotherapy is crucial, and timely adjustments to the chemotherapy regimen are necessary. In addition, rational control of drug selection and dosage is essential to minimize the occurrence of cardiac toxicity.


Subject(s)
Bone Neoplasms , Cardiotoxicity , Doxorubicin , Epirubicin , Osteosarcoma , Humans , Osteosarcoma/drug therapy , Epirubicin/adverse effects , Epirubicin/administration & dosage , Doxorubicin/adverse effects , Doxorubicin/analogs & derivatives , Female , Male , Retrospective Studies , Adult , Young Adult , Bone Neoplasms/drug therapy , Cardiotoxicity/etiology , Adolescent , Stroke Volume/drug effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ventricular Function, Left/drug effects , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/therapeutic use , Echocardiography , Troponin T/blood , Creatine Kinase, MB Form/blood , Cyclophosphamide/adverse effects , Cyclophosphamide/administration & dosage , Child , Cisplatin/adverse effects , Cisplatin/administration & dosage , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL