Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Colloid Interface Sci ; 649: 223-233, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37348342

ABSTRACT

Lithium-sulfur batteries (LSBs) are among the most promising next-generation high energy density energy-storage systems. However, practical application has been hindered by fundamental problems, especially shuttling by the higher-order polysulfides (PSs) and slow redox kinetics. Herein, a novel electrolyte-based strategy is proposed by adding an ultrasmall amount of the low-cost and commercially available cationic antistatic agent octadecyl dimethyl hydroxyethyl quaternary ammonium nitrate (SN) into a routine ether electrolyte. Due to the strong cation-anion interaction and bridge-bonding with SN, rapid flocculation of the soluble polysulfide intermediates into solid-state polysulfide-SN sediments is found, which significantly inhibited the adverse shuttling effect. Moreover, a catalytic effect was also demonstrated for conversion of the polysulfide-SN intermediates, which enhanced the redox kinetics of Li-S batteries. Encouragingly, for cells with only 0.1 % added SN, an initial specific capacity of 783.6 mAh/g and a retained specific capacity of 565.7 mAh/g were found at 2C after 200 cycles, which corresponded to an ultralow capacity decay rate of only 0.014 % per cycle. This work may provide a simple and promising regulation strategy for preparing highly stable Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL