Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cell ; 140(5): 631-42, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211133

ABSTRACT

Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.


Subject(s)
Biological Evolution , Naegleria/genetics , Eukaryota/classification , Eukaryota/genetics , Flagella/metabolism , Molecular Sequence Data , Naegleria/metabolism , Phylogeny , Protozoan Proteins/analysis , Protozoan Proteins/genetics
2.
Nature ; 493(7433): 526-31, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23254933

ABSTRACT

Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.


Subject(s)
Body Patterning/genetics , Evolution, Molecular , Genome/genetics , Leeches/genetics , Mollusca/genetics , Phylogeny , Polychaeta/genetics , Animals , Conserved Sequence/genetics , Genes, Homeobox/genetics , Genetic Linkage , Genetic Speciation , Humans , INDEL Mutation/genetics , Introns/genetics , Leeches/anatomy & histology , Mollusca/anatomy & histology , Multigene Family/genetics , Polychaeta/anatomy & histology , Synteny/genetics
3.
PLoS Genet ; 12(8): e1005876, 2016 08.
Article in English | MEDLINE | ID: mdl-27512984

ABSTRACT

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.


Subject(s)
Ascomycota/genetics , Disease Resistance/genetics , Musa/genetics , Plant Diseases/genetics , Plant Leaves/genetics , Ascomycota/pathogenicity , Breeding , Chromosomes, Fungal/genetics , Genetic Variation , Genome, Fungal , Genotype , Musa/growth & development , Musa/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Retroelements/genetics
4.
BMC Genomics ; 18(1): 519, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687070

ABSTRACT

BACKGROUND: Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. RESULTS: Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. CONCLUSIONS: Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.


Subject(s)
Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Nanotechnology/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tissue Array Analysis/methods , Cell Line , Humans , Islets of Langerhans/cytology , Islets of Langerhans/metabolism
5.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24277808

ABSTRACT

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Subject(s)
Evolution, Molecular , Genome, Fungal/genetics , Glomeromycota/genetics , Mycorrhizae/genetics , Plants/microbiology , Symbiosis/genetics , Base Sequence , Molecular Sequence Data , Sequence Analysis, DNA
6.
Genome Res ; 21(6): 885-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21543515

ABSTRACT

The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.


Subject(s)
Aspergillus niger/genetics , Computational Biology/methods , Evolution, Molecular , Genetic Variation , Genome, Fungal/genetics , Phylogeny , Base Sequence , Gene Expression Profiling , Gene Rearrangement/genetics , Gene Transfer, Horizontal/genetics , Genomics/methods , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Species Specificity , Synteny/genetics
7.
Nature ; 454(7207): 955-60, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18719581

ABSTRACT

As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the approximately 98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.


Subject(s)
Genome/genetics , Invertebrates/genetics , Invertebrates/physiology , Animals , Cell Adhesion , Conserved Sequence , Extracellular Matrix/genetics , Gene Expression Regulation, Developmental , Germ Cells , Humans , Invertebrates/anatomy & histology , Invertebrates/classification , Phylogeny , Reproduction/genetics , Sequence Analysis, DNA , Sex , Signal Transduction , Synteny , Transcription Factors/genetics
8.
Nature ; 451(7180): 783-8, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18273011

ABSTRACT

Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.


Subject(s)
Eukaryotic Cells/metabolism , Genome/genetics , Phylogeny , Animals , Cell Adhesion , Conserved Sequence , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Evolution, Molecular , Extracellular Matrix/metabolism , Gene Expression Regulation , Genetic Speciation , Hedgehog Proteins/chemistry , Hedgehog Proteins/genetics , Humans , Introns/genetics , Phosphotyrosine/metabolism , Protein Structure, Tertiary/genetics , Receptors, Notch/chemistry , Receptors, Notch/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
9.
PLoS Genet ; 7(6): e1002070, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21695235

ABSTRACT

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Subject(s)
Ascomycota/genetics , Chromosomes, Fungal/genetics , Genome, Fungal/genetics , Ascomycota/metabolism , Ascomycota/pathogenicity , Gene Rearrangement , Plant Diseases/microbiology , Synteny , Triticum/microbiology
10.
Proc Natl Acad Sci U S A ; 108(22): 9166-71, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21536894

ABSTRACT

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Subject(s)
Basidiomycota/genetics , Fungi/genetics , Triticum/microbiology , Gene Expression Profiling , Genes, Fungal , Genome , Genome, Fungal , Models, Genetic , Nitrates/chemistry , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Sequence Analysis, DNA , Sulfates/chemistry
11.
Nature ; 443(7114): 950-5, 2006 Oct 26.
Article in English | MEDLINE | ID: mdl-16980956

ABSTRACT

Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.


Subject(s)
Genomics , Oligochaeta/microbiology , Oligochaeta/physiology , Proteobacteria/genetics , Proteobacteria/metabolism , Symbiosis/genetics , Symbiosis/physiology , Animals , Carbon/metabolism , Digestion/physiology , Energy Metabolism , Environment , Microbiology , Models, Biological
12.
Proc Natl Acad Sci U S A ; 106(6): 1954-9, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19193860

ABSTRACT

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.


Subject(s)
Gene Expression Profiling , Genome, Fungal , Lignin/metabolism , Metabolic Networks and Pathways/genetics , Polyporales/genetics , Base Sequence , Biological Evolution , Cellulases , Enzymes/genetics , Glycoside Hydrolases , Molecular Sequence Data , Oxidoreductases , Polyporales/metabolism , Wood/metabolism
13.
PLoS Genet ; 5(8): e1000618, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19714214

ABSTRACT

The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.


Subject(s)
Chromosomes, Fungal/genetics , Genome, Fungal , Nectria/genetics , Base Composition , Chromosomes, Fungal/chemistry , Fungi/classification , Fungi/genetics , Gene Duplication , Nectria/chemistry , Nectria/classification , Phylogeny
14.
Nat Biotechnol ; 25(3): 319-26, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17334359

ABSTRACT

Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions.


Subject(s)
Biosynthetic Pathways/genetics , Cellulose/metabolism , Genome, Bacterial/genetics , Lignin/metabolism , Pichia/genetics , Xylose/metabolism , Biomass , DNA, Fungal/analysis , Fermentation , Gene Library , Molecular Sequence Data , Phylogeny , Pichia/enzymology , Sequence Alignment , Sequence Analysis, DNA
15.
Nat Biotechnol ; 24(10): 1263-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16998472

ABSTRACT

Enhanced biological phosphorus removal (EBPR) is one of the best-studied microbially mediated industrial processes because of its ecological and economic relevance. Despite this, it is not well understood at the metabolic level. Here we present a metagenomic analysis of two lab-scale EBPR sludges dominated by the uncultured bacterium, "Candidatus Accumulibacter phosphatis." The analysis sheds light on several controversies in EBPR metabolic models and provides hypotheses explaining the dominance of A. phosphatis in this habitat, its lifestyle outside EBPR and probable cultivation requirements. Comparison of the same species from different EBPR sludges highlights recent evolutionary dynamics in the A. phosphatis genome that could be linked to mechanisms for environmental adaptation. In spite of an apparent lack of phylogenetic overlap in the flanking communities of the two sludges studied, common functional themes were found, at least one of them complementary to the inferred metabolism of the dominant organism. The present study provides a much needed blueprint for a systems-level understanding of EBPR and illustrates that metagenomics enables detailed, often novel, insights into even well-studied biological systems.


Subject(s)
Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Genome, Bacterial , Phosphorus/metabolism , Sewage/microbiology , Adaptation, Biological , Phosphorus/isolation & purification , Waste Disposal, Fluid
16.
Genome Biol ; 12(2): R20, 2011.
Article in English | MEDLINE | ID: mdl-21356102

ABSTRACT

BACKGROUND: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. RESULTS: We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. CONCLUSIONS: The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.


Subject(s)
Biological Evolution , Dictyostelium/genetics , Evolution, Molecular , Genome , Genomics/methods , Animals , Base Sequence , Conserved Sequence/genetics , Gene Transfer, Horizontal , Genetic Speciation , Genome Size , Histidine Kinase , Humans , Microsatellite Repeats , Molecular Sequence Data , Phylogeny , Polyketide Synthases/genetics , Protein Kinases/genetics , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
17.
Science ; 331(6017): 555-61, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21292972

ABSTRACT

We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.


Subject(s)
Daphnia/genetics , Ecosystem , Genome , Adaptation, Physiological , Amino Acid Sequence , Animals , Base Sequence , Chromosome Mapping , Daphnia/physiology , Environment , Evolution, Molecular , Gene Conversion , Gene Duplication , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Genes , Genes, Duplicate , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Multigene Family , Phylogeny , Sequence Analysis, DNA
18.
Science ; 329(5988): 223-6, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20616280

ABSTRACT

The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its approximately 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.


Subject(s)
Algal Proteins/chemistry , Algal Proteins/genetics , Chlamydomonas reinhardtii/genetics , Genome , Volvox/genetics , Algal Proteins/metabolism , Biological Evolution , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/physiology , DNA, Algal/genetics , Evolution, Molecular , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Genes , Molecular Sequence Data , Protein Structure, Tertiary , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Species Specificity , Synteny , Volvox/cytology , Volvox/growth & development , Volvox/physiology
19.
Science ; 319(5859): 64-9, 2008 Jan 04.
Article in English | MEDLINE | ID: mdl-18079367

ABSTRACT

We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.


Subject(s)
Biological Evolution , Bryopsida/genetics , Genome, Plant , Adaptation, Physiological , Animals , Arabidopsis/genetics , Arabidopsis/physiology , Bryopsida/physiology , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/physiology , Computational Biology , DNA Repair , Dehydration , Gene Duplication , Genes, Plant , Magnoliopsida/genetics , Magnoliopsida/physiology , Metabolic Networks and Pathways/genetics , Multigene Family , Oryza/genetics , Oryza/physiology , Phylogeny , Plant Proteins/genetics , Plant Proteins/physiology , Repetitive Sequences, Nucleic Acid , Retroelements , Sequence Analysis, DNA , Signal Transduction/genetics
20.
Mol Genet Genomics ; 277(4): 427-39, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17252281

ABSTRACT

The chloroplast genomes of the pennate diatom Phaeodactylum tricornutum and the centric diatom Thalassiosira pseudonana have been completely sequenced and are compared with those of other secondary plastids of the red lineage: the centric diatom Odontella sinensis, the haptophyte Emiliania huxleyi, and the cryptophyte Guillardia theta. All five chromist genomes are compact, with small intergenic regions and no introns. The three diatom genomes are similar in gene content with 127-130 protein-coding genes, and genes for 27 tRNAs, three ribosomal RNAs and two small RNAs (tmRNA and signal recognition particle RNA). All three genomes have open-reading frames corresponding to ORFs148, 355 and 380 of O. sinensis, which have been assigned the names ycf88, ycf89 and ycf90. Gene order is not strictly conserved, but there are a number of conserved gene clusters showing remnants of red algal origin. The acpP, tsf and psb28 genes appear to be on the way from the plastid to the host nucleus, indicating that endosymbiotic gene transfer is a continuing process.


Subject(s)
Chloroplasts/genetics , DNA, Intergenic/genetics , Diatoms/genetics , Genome , Open Reading Frames/genetics , Evolution, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL