Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 947
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547066

ABSTRACT

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Subject(s)
Urinary Bladder , Urinary Tract Infections , Animals , Humans , Urinary Bladder/surgery , Urodynamics/physiology , Prostheses and Implants , Cystectomy
2.
Circ Res ; 132(10): 1405-1424, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37167356

ABSTRACT

SARS-CoV-2, the virus underlying COVID-19, has now been recognized to cause multiorgan disease with a systemic effect on the host. To effectively combat SARS-CoV-2 and the subsequent development of COVID-19, it is critical to detect, monitor, and model viral pathogenesis. In this review, we discuss recent advancements in microfluidics, organ-on-a-chip, and human stem cell-derived models to study SARS-CoV-2 infection in the physiological organ microenvironment, together with their limitations. Microfluidic-based detection methods have greatly enhanced the rapidity, accessibility, and sensitivity of viral detection from patient samples. Engineered organ-on-a-chip models that recapitulate in vivo physiology have been developed for many organ systems to study viral pathology. Human stem cell-derived models have been utilized not only to model viral tropism and pathogenesis in a physiologically relevant context but also to screen for effective therapeutic compounds. The combination of all these platforms, along with future advancements, may aid to identify potential targets and develop novel strategies to counteract COVID-19 pathogenesis.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Microfluidics , Microphysiological Systems
3.
Eur J Neurosci ; 59(7): 1833-1847, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217338

ABSTRACT

Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.


Subject(s)
Ficus , Neurodegenerative Diseases , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ficus/chemistry , Neurodegenerative Diseases/drug therapy , Phytochemicals
4.
Biochem Biophys Res Commun ; 705: 149756, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38460440

ABSTRACT

Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.


Subject(s)
Myocardial Infarction , Stilbenes , Rats , Animals , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Resveratrol/pharmacology , Stilbenes/pharmacology , Stilbenes/therapeutic use , Lipopolysaccharides/pharmacology , Ligands , Molecular Docking Simulation , Rats, Wistar , Myocardial Infarction/drug therapy , Diet
5.
Plant Physiol ; 192(3): 2161-2184, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36879389

ABSTRACT

Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , MADS Domain Proteins/metabolism , Fruit/genetics , Fruit/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Pyruvaldehyde/metabolism , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
6.
Cancer Cell Int ; 24(1): 11, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184584

ABSTRACT

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase integral to the regulation of many cellular processes. Due to the deregulation of PP2A in cancer, many of these processes are turned toward promoting tumor progression. Considerable research has been undertaken to discover molecules capable of modulating PP2A activity in cancer. Because PP2A is capable of immense substrate specificity across many cellular processes, the therapeutic targeting of PP2A in cancer can be completed through either enzyme inhibitors or activators. PP2A modulators likewise tend to be effective in drug-resistant cancers and work synergistically with other known cancer therapeutics. In this review, we will discuss the patterns of PP2A deregulation in cancer, and its known downstream signaling pathways important for cancer regulation, along with many activators and inhibitors of PP2A known to inhibit cancer progression.

7.
Langmuir ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319126

ABSTRACT

In recent years, the issue of pharmaceutical contaminants in water bodies has emerged as a significant environmental concern owing to the potential negative impacts on both aquatic ecosystems and human health. Consequently, the development of efficient and eco-friendly methods for their determination and removal is of paramount importance. In this context, the development of a surfactant ensemble sensor has been explored for hard-to-sense amphiphilic drug, i.e., amitriptyline. Herein, a pyrene-based amphiphile chemoreceptor was synthesized and characterized through various spectroscopic techniques such as 1H, 13C NMR, single-crystal XRD, FTIR, and ES-mass spectrometry. Then, dodecanoic acid (DA) and a pyrene-based receptor in a THF/water solvent system were used to generate reverse micelle-based self-aggregates of SUPRAS (SUPRAmolecular Solvent). The structural aspects, such as morphology and size, along with the stability of the SUPRAS aggregates were unfolded through spectroscopic and microscopic insights. The present investigation describes a synergistic approach that combines the unique properties of premicellar concentration of supramolecular solvent with the promising potential of pyrene-based receptor for enhanced amitriptyline extraction with simultaneous determination from water (LOD = 12 nM). To evaluate the effectiveness of the developed aggregates in real-world scenarios, experiments were conducted to determine the sensing efficiency among various pharmaceutical pollutants commonly found in water sources. The results reveal that the synergistic nanoensemble exhibits remarkable sensing ability, toward the amitriptyline (AMT) drug outperforming conventional methods.

8.
Pharmacol Res ; 203: 107163, 2024 May.
Article in English | MEDLINE | ID: mdl-38569982

ABSTRACT

Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Drug Tolerance , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
9.
Bioorg Med Chem Lett ; 102: 129674, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38408513

ABSTRACT

Fyn, Blk, and Lyn are part of a group of proteins called Src family kinases. They are crucial in controlling cell communication and their response to the growth, changes, and immune system. Blocking these proteins with inhibitors can be a way to treat diseases where these proteins are too active. The primary mode of action of these inhibitors is to inhibit the phosphorylation of Fyn, Blk, and Lyn receptors, which in turn affects how signals pass within the cells. This review shows the structural and functional aspects of Fyn, Blk, and Lyn kinases, highlighting the significance of their dysregulation in diseases such as cancer and autoimmune disorders. The discussion encompasses the design strategies, SAR analysis, and chemical characteristics of effective inhibitors, shedding light on their specificity and potency. Furthermore, it explores the progress of clinical trials of these inhibitors, emphasizing their potential therapeutic applications.


Subject(s)
Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins/metabolism , src-Family Kinases , Phosphorylation
10.
Physiol Plant ; 176(3): e14390, 2024.
Article in English | MEDLINE | ID: mdl-38899466

ABSTRACT

A previously identified wheat drought stress responsive Universal stress protein, TaUSP_3B-1 has been found to work in an auxin dependent manner in the plant root tissues in the differentiation zone. We also found a novel interacting partner, TaGolS, which physically interacts with TaUSP_3B-1 and colocalizes in the endoplasmic reticulum. TaGolS is a key enzyme in the RFO (Raffinose oligosaccharides) biosynthesis which is well reported to provide tolerance under water deficit conditions. TaUSP_3B-1 overexpression lines showed an early flowering phenotype under drought stress which might be attributed to the increased levels of AtTPPB and AtTPS transcripts under drought stress. Moreover, at the cellular levels ER stress induced TaUSP_3B-1 transcription and provides tolerance in both adaptive and acute ER stress via less ROS accumulation in the overexpression lines. TaUSP_3B-1 overexpression plants had increased silique numbers and a denser root architecture as compared to the WT plants under drought stress.


Subject(s)
Droughts , Endoplasmic Reticulum Stress , Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Endoplasmic Reticulum Stress/physiology , Stress, Physiological/genetics , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum/metabolism
11.
Occup Environ Med ; 81(6): 287-295, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38955484

ABSTRACT

OBJECTIVES: Brick kiln workers in Nepal are a neglected population who are exposed to high respirable silica concentrations, and few use interventions to reduce exposure. We aimed to characterise the prevalence of respiratory personal protective equipment (PPE) use, understand knowledge and attitudes towards kiln dust and respiratory PPE and identify factors associated with respiratory PPE use. METHODS: We conducted a cross-sectional study in Bhaktapur, Nepal. We used simple random selection to identify 10 out of 64 total kilns and stratified random sampling of 30 households to enrol workers aged ≥14 years within selected kilns. Field workers surveyed participants using structured questionnaires. Our primary outcome was to characterise the prevalence of current respiratory PPE use and secondary outcomes were summaries of knowledge, attitudes and practice of PPE use. RESULTS: We surveyed 83 workers (mean age 30.8 years, 77.1% male). Of these, 28.9% reported current respiratory PPE use at work, 3.6% heard of silicosis prior to the survey and 24.1% correctly identified the best respiratory PPE (N95, compared with surgical masks and barrier face coverings) for reducing dust exposure. Respiratory PPE users had higher income (mean monthly household income US$206 vs US$145; p=0.04) and education levels (25% vs 5.1% completed more than primary school; p=0.02) compared with non-users. CONCLUSIONS: Respiratory PPE use was low. Workers had poor knowledge of kiln dust health effects and proper respiratory PPE. We highlight important barriers to PPE use, particularly knowledge gaps, which can guide future investigations to reduce the silicosis burden among brick kiln workers.


Subject(s)
Dust , Health Knowledge, Attitudes, Practice , Occupational Exposure , Personal Protective Equipment , Silicon Dioxide , Humans , Nepal/epidemiology , Male , Adult , Female , Cross-Sectional Studies , Occupational Exposure/prevention & control , Personal Protective Equipment/statistics & numerical data , Surveys and Questionnaires , Silicosis/epidemiology , Silicosis/prevention & control , Respiratory Protective Devices/statistics & numerical data , Middle Aged , Young Adult , Construction Materials
12.
Bioorg Chem ; 142: 106953, 2024 01.
Article in English | MEDLINE | ID: mdl-37925887

ABSTRACT

Herein, a series of isatin tethered indolo[2,3-b]quinoxaline hybrids was synthesized by considering the pharmacophoric features of known DNA intercalators and topoisomerase II inhibitors. The anti-proliferative properties of the synthesized compounds were evaluated against ovarian cancer cell lines (SKOV-3 and Hey A8). Four of the compounds exhibited promising anti-proliferative activities, with one of them being 10-fold more potent than cisplatin against drug-resistant Hey A8 cells. Further investigations were carried out to determine the DNA intercalating affinities of the most active compounds as potential mechanisms for their anti-proliferative activities. ADMET in silico studies were performed to assess the physicochemical, pharmacokinetics, and toxicity parameters of active compounds. This study, to the best of our knowledge, is the first report on the potential of isatin-indoloquinoxaline hybrids as structural blueprints for the development of new DNA intercalators. Additionally, it explores their potential to circumvent platinum-based resistance in ovarian cancer.


Subject(s)
Antineoplastic Agents , Isatin , Ovarian Neoplasms , Humans , Female , Isatin/pharmacology , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , DNA/metabolism , Structure-Activity Relationship
13.
Environ Res ; 257: 119220, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38797466

ABSTRACT

Brick kiln emissions adversely affect air pollution and the health of workers and individuals living near the kilns; however, evidence of their impacts remains limited. We conducted a systematic review of brick kiln pollution (emissions, source contributions and personal exposures) and its effects on health. We extracted articles from electronic databases and through manual citation searching. We estimated pooled, sample-size-weighted means and standard deviations for personal exposures by job type; computed mean emission factors and pollutant concentrations by brick kiln design; and meta-analyzed differences in means or proportions for health outcomes between brick kiln workers and controls or for participants living near or far away from kilns. We identified 104 studies; 74 were conducted in South Asia. The most evaluated pollutants were particulate matter (PM; n = 48), sulfur dioxide (SO2; n = 24) and carbon monoxide (CO; n = 22), and the most evaluated health outcomes were respiratory health (n = 34) and musculoskeletal disorders (n = 9). PM and CO emissions were higher among traditional than improved brick kilns. Mean respirable silica exposures were only measured in 4 (4%) studies and were as high as 620 µg/m3, exceeding the NIOSH recommended exposure limit by a factor of over 12. Brick kiln workers had consistently worse lung function, more respiratory symptoms, more musculoskeletal complaints, and more inflammation when compared to unexposed participants across studies; however, most studies had a small sample size and did not fully describe methods used for sampling or data collection. On average, brick kiln workers had worse health outcomes when compared to unexposed controls but study quality supporting the evidence was low. Few studies reported silica concentrations or personal exposures, but the few that did suggest that exposures are high. Further research is needed to better understand the relationship between brick kiln pollution and health among workers, and to evaluate exposure mitigation strategies.


Subject(s)
Air Pollution , Humans , Air Pollution/analysis , Air Pollution/adverse effects , Air Pollutants/analysis , Environmental Exposure/analysis , Construction Materials
14.
Am J Respir Crit Care Med ; 208(10): 1052-1062, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37698443

ABSTRACT

Objectives: Chronic obstructive pulmonary disease (COPD) disproportionately affects low- and middle-income countries. Health systems are ill prepared to manage the increase in COPD cases. Methods: We performed a pilot effectiveness-implementation randomized field trial of a community health worker (CHW)-supported, 1-year self-management intervention in individuals with COPD grades B-D. The study took place in low-resource settings of Nepal, Peru, and Uganda. The primary outcome was the St. George's Respiratory Questionnaire (SGRQ) score at 1 year. We evaluated differences in moderate to severe exacerbations, all-cause hospitalizations, and the EuroQol score (EQ-5D-3 L) at 12 months. Measurements and Main Results: We randomly assigned 239 participants (119 control arm, 120 intervention arm) with grades B-D COPD to a multicomponent, CHW-supported intervention or standard of care and COPD education. Twenty-five participants (21%) died or were lost to follow-up in the control arm compared with 11 (9%) in the intervention arm. At 12 months, there was no difference in mean total SGRQ score between the intervention and control arms (34.7 vs. 34.0 points; adjusted mean difference, 1.0; 95% confidence interval, -4.2, 6.1; P = 0.71). The intervention arm had a higher proportion of hospitalizations than the control arm (10% vs. 5.2%; adjusted odds ratio, 2.2; 95% confidence interval, 0.8, 7.5; P = 0.15) at 12 months. Conclusions: A CHW-based intervention to support self-management of acute exacerbations of COPD in three resource-poor settings did not result in differences in SGRQ scores at 1 year. Fidelity was high, and intervention engagement was moderate. Although these results cannot differentiate between a failed intervention or implementation, they nonetheless suggest that we need to revisit our strategy. Clinical trial registered with www.clinicaltrials.gov (NCT03359915).


Subject(s)
Pulmonary Disease, Chronic Obstructive , Self-Management , Humans , Developing Countries , Pilot Projects , Hospitalization , Pulmonary Disease, Chronic Obstructive/therapy , Quality of Life
15.
Am J Respir Crit Care Med ; 208(4): 442-450, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37369142

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is a prevalent and burdensome condition in low- and middle-income countries (LMICs). Challenges to better care include more effective diagnosis and access to affordable interventions. There are no previous reports describing therapeutic needs of populations with COPD in LMICs who were identified through screening. Objectives: To describe unmet therapeutic need in screening-detected COPD in LMIC settings. Methods: We compared interventions recommended by the international Global Initiative for Chronic Obstructive Lung Disease COPD strategy document, with that received in 1,000 people with COPD identified by population screening at three LMIC sites in Nepal, Peru, and Uganda. We calculated costs using data on the availability and affordability of medicines. Measurement and Main Results: The greatest unmet need for nonpharmacological interventions was for education and vaccinations (applicable to all), pulmonary rehabilitation (49%), smoking cessation (30%), and advice on biomass smoke exposure (26%). Ninety-five percent of the cases were previously undiagnosed, and few were receiving therapy (4.5% had short-acting ß-agonists). Only three of 47 people (6%) with a previous COPD diagnosis had access to drugs consistent with recommendations. None of those with more severe COPD were accessing appropriate maintenance inhalers. Even when available, maintenance treatments were unaffordable, with 30 days of treatment costing more than a low-skilled worker's daily average wage. Conclusions: We found a significant missed opportunity to reduce the burden of COPD in LMIC settings, with most cases undiagnosed. Although there is unmet need in developing novel therapies, in LMICs where the burden is greatest, better diagnosis combined with access to affordable interventions could translate to immediate benefit.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Smoking Cessation , Humans , Developing Countries , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/therapy , Uganda , Peru
16.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063040

ABSTRACT

There is an urgent need to develop safer and more effective modalities for the treatment of numerous pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Over the past decades, cyclodextrins (CDs) have gathered great attention as potential drug carriers due to their ability to enhance their bioactivities and properties. Likewise, selenium (Se) and tellurium (Te) have been extensively studied during the last decades due to their possible therapeutical applications. Although there is limited research on the relationship between Se and Te and CDs, herein, we highlight different representative examples of the advances related to this topic as well as give our view on the future directions of this emerging area of research. This review encompasses three different aspects of this relationship: (1) modification of the structure of the different CDs; (2) formation of host-guest interaction complexes of naïve CDs with Se and Te derivatives in order to overcome specific limitations of the latter; and (3) the use of CDs as catalysts to achieve novel Se and Te compounds.


Subject(s)
Cyclodextrins , Selenium , Tellurium , Tellurium/chemistry , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Selenium/chemistry , Humans , Drug Carriers/chemistry , Animals
17.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338811

ABSTRACT

Commercial cyclodextrins (CDs) are commonly used to form inclusion complexes (ICs) with different molecules in order to enhance their water solubility, stability, and bioavailability. Nowadays, there is strong, convincing evidence of the anticancer effect of selenium (Se)-containing compounds. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their further evaluation and clinical use. In this work, we study the enhancement of solubility with CD complexes for a set of different nonsteroidal anti-inflammatory drug (NSAID) derivatives with Se as selenoester or diacyl diselenide chemical forms, with demonstrated antitumoral activity. The CD complexes were analyzed via nuclear magnetic resonance (NMR) spectroscopic techniques. In order to obtain additional data that could help explain the experimental results obtained, 3D models of the theoretical CD-compound complexes were constructed using molecular modeling techniques. Among all the compounds, I.3e and II.5 showed a remarkable increase in their water solubility, which could be ascribed to the formation of the most stable interactions with the CDs used, in agreement with the in silico studies performed. Thus, the preliminary results obtained in this work led us to confirm the selection of ß and γ-CD as the most suitable for overcoming the pharmaceutical drawbacks of these Se derivatives.


Subject(s)
Cyclodextrins , Selenium , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Solubility , Water/chemistry , Pharmaceutical Preparations , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
18.
Molecules ; 29(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999066

ABSTRACT

Aldehyde dehydrogenases (ALDHs) are a family of enzymes that aid in detoxification and are overexpressed in several different malignancies. There is a correlation between increased expression of ALDH and a poor prognosis, stemness, and resistance to several drugs. Several ALDH inhibitors have been generated due to the crucial role that ALDH plays in cancer stem cells. All of these inhibitors, however, are either ineffective, very toxic, or have yet to be subjected to rigorous testing on their effectiveness. Although various drug-like compounds targeting ALDH have been reported in the literature, none have made it to routine use in the oncology clinic. As a result, new potent, non-toxic, bioavailable, and therapeutically effective ALDH inhibitors are still needed. In this study, we designed and synthesized potent multi-ALDH isoform inhibitors based on the isatin and indazole pharmacophore. Molecular docking studies and enzymatic tests revealed that among all of the synthesized analogs, compound 3 is the most potent inhibitor of ALDH1A1, ALDH3A1, and ALDH1A3, exhibiting 51.32%, 51.87%, and 36.65% inhibition, respectively. The ALDEFLUOR assay further revealed that compound 3 acts as an ALDH broad spectrum inhibitor at 500 nM. Compound 3 was also the most cytotoxic to cancer cells, with an IC50 in the range of 2.1 to 3.8 µM for ovarian, colon, and pancreatic cancer cells, compared to normal and embryonic kidney cells (IC50 7.1 to 8.7 µM). Mechanistically, compound 3 increased ROS activity due to potent multi-ALDH isoform inhibition, which increased apoptosis. Taken together, this study identified a potent multi-isoform ALDH inhibitor that could be further developed as a cancer therapeutic.


Subject(s)
Aldehyde Dehydrogenase , Enzyme Inhibitors , Isatin , Molecular Docking Simulation , Humans , Isatin/chemistry , Isatin/pharmacology , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Structure
19.
Physiol Mol Biol Plants ; 30(2): 289-303, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38623160

ABSTRACT

An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.

20.
Circulation ; 146(22): 1674-1693, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36321451

ABSTRACT

BACKGROUND: ALPK3 encodes α-kinase 3, a muscle-specific protein of unknown function. ALPK3 loss-of-function variants cause cardiomyopathy with distinctive clinical manifestations in both children and adults, but the molecular functions of ALPK3 remain poorly understood. METHODS: We explored the putative kinase activity of ALPK3 and the consequences of damaging variants using isogenic human induced pluripotent stem cell-derived cardiomyocytes, mice, and human patient tissues. RESULTS: Multiple sequence alignment of all human α-kinase domains and their orthologs revealed 4 conserved residues that were variant only in ALPK3, demonstrating evolutionary divergence of the ALPK3 α-kinase domain sequence. Phosphoproteomic evaluation of both ALPK3 kinase domain inhibition and overexpression failed to detect significant changes in catalytic activity, establishing ALPK3 as a pseudokinase. Investigations into alternative functions revealed that ALPK3 colocalized with myomesin proteins (MYOM1, MYOM2) at both the nuclear envelope and the sarcomere M-band. ALPK3 loss-of-function variants caused myomesin proteins to mislocalize and also dysregulated several additional M-band proteins involved in sarcomere protein turnover, which ultimately impaired cardiomyocyte structure and function. CONCLUSIONS: ALPK3 is an essential cardiac pseudokinase that inserts in the nuclear envelope and the sarcomere M-band. Loss of ALPK3 causes mislocalization of myomesins, critical force-buffering proteins in cardiomyocytes, and also dysregulates M-band proteins necessary for sarcomere protein turnover. We conclude that ALPK3 cardiomyopathy induces ventricular dilatation caused by insufficient myomesin-mediated force buffering and hypertrophy by impairment of sarcomere proteostasis.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , Muscle Proteins , Protein Kinases , Adult , Animals , Child , Humans , Mice , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Connectin/metabolism , Induced Pluripotent Stem Cells/metabolism , Muscle Proteins/genetics , Myocytes, Cardiac/metabolism , Sarcomeres/metabolism , Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL