ABSTRACT
Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.
Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Metabolic Networks and Pathways , Methylglucosides/metabolism , Oxidative Stress , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Carbohydrate Metabolism , Gene Expression Regulation, Bacterial , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship , Sulfur/metabolismABSTRACT
Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant, algal, and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for SQ breakdown is the sulfoglycolytic Embden-Meyerhof-Parnas pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is understood for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures of complexes with substrate SFP and product dihydroxyacetone phosphate reveal a dimer-of-dimers (tetrameric) assembly, the sulfonate-binding pocket, two metal-binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal-dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfoglycolytic Embden-Meyerhof-Parnas gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases have mututally exclusive occurrence within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar.
Subject(s)
Aldehyde-Lyases , Fructose-Bisphosphate Aldolase , Aldehyde-Lyases/chemistry , Carbon , Fructose-Bisphosphate Aldolase/chemistry , Metals , PhosphatesABSTRACT
The solute-binding protein (SBP) components of periplasmic binding protein-dependent ATP-binding cassette (ABC)-type transporters often possess exquisite selectivity for their cognate ligands. Maltose binding protein (MBP), the best studied of these SBPs, has been extensively used as a fusion partner to enable the affinity purification of recombinant proteins. However, other SBPs and SBP-ligand based affinity systems remain underexplored. The sulfoquinovose-binding protein SmoF, is a substrate-binding protein component of the ABC transporter cassette in Agrobacterium tumefaciens involved in importing sulfoquinovose (SQ) and its derivatives for SQ catabolism. Here, we show that SmoF binds with high affinity to the octyl glycoside of SQ (octyl-SQ), demonstrating remarkable tolerance to extension of the anomeric substituent. The 3D X-ray structure of the SmoF·octyl-SQ complex reveals accommodation of the octyl chain, which projects to the protein surface, providing impetus for the synthesis of a linker-equipped SQ-amine using a thiol-ene reaction as a key step, and its conjugation to cyanogen bromide modified agarose. We demonstrate the successful capture and release of SmoF from SQ-agarose resin using SQ as competitive eluant, and selectivity for release versus other organosulfonates. We show that SmoF can be captured and purified from a cell lysate, demonstrating the utility of SQ-agarose in capturing SQ binding proteins from complex mixtures. The present work provides a pathway for development of 'capture-and-release' affinity resins for the discovery and study of SBPs.
Subject(s)
Agrobacterium tumefaciens , Sepharose , Sepharose/chemistry , Agrobacterium tumefaciens/chemistry , Agrobacterium tumefaciens/metabolism , Models, Molecular , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-RayABSTRACT
The potential of optical polarimetry is increasingly explored to unravel the tissue structure through several optical instrument configurations. Fiber-based solutions offer portability and are accommodative in an endoscopic examination environment. Here, we address the challenges in realizing a fiber-based optical polarimetry system through an approach involving an all-fiber polarization controller. The methods of device calibration and application in bulk tissues are discussed, and results are presented.
ABSTRACT
Tissue polarimetry has been gaining importance in extracting useful diagnostic information from the structural attributes of tissues, which vary in response to the tissue health status and hence find great potential in cancer diagnosis. However, the complexities associated with cancer make it challenging to isolate the characteristic changes as the tumor progresses using polarimetry. This study attempts to experimentally characterize the polarimetric behavior in colon cancer associated with various stages of development. Bulk and unstained sections of normal and tumor colon tissue were imaged in the reflection and transmission polarimetry configurations at low and high imaging resolutions using an in-house developed Mueller polarimeter. Through this study, we observed that the information about the major contributors of scattering in colon tissue, manifesting in depolarization and retardance, can be obtained from the bulk tissue and unstained sections. These parameters aid in characterizing the polarimetric changes as the colon tumor progresses. While the unstained colon section best indicated the depolarization contrast between normal and tumor, the contrast through the retardance parameter was more pronounced in the bulk colon tissue. The results suggest that the polarimetric "digitally stained" images obtained by Mueller polarimetry are comparable with the bulk tissue counterparts, making it useful for characterizing colon cancer tissues across different stages of development.
Subject(s)
Colonic Neoplasms , Humans , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , Spectrum Analysis , Staining and LabelingABSTRACT
BACKGROUND: Ferrum phosphoricum (FP) has been used by traditional medicine practitioners for various ailments since ancient times. However, scientific evidence on the safety of FP is still unavailable. Thus, the current study aimed to investigate the acute and sub-acute oral toxicity of homeopathic FP in experimental rats. METHODS: In an acute toxicity investigation, a single dose of 2,000 µL/kg of FP 6c, 30c and 200c was administered to female Wistar rats, which were monitored for up to 14 days according to the Organization for Economic Cooperation and Development (OECD) guideline 423. For a sub-acute toxicity study, FP 6c, 30c and 200c (200 µL/kg) were administered to male and female rats for 28 days as per the OECD guideline 407. All the animals were observed for mortality, clinical signs and body weight during the study. At the end of the experiment, hematological, biochemical and histopathological assessments were performed. RESULTS: During the acute toxicity study, no mortality was observed in rats administered with FP, and thus the median lethal dose (LD50) was identified as >2,000 µL/kg. In the sub-acute study, no mortality or adverse clinical signs were noticed with FP treatment. Moreover, weekly body weight gain was normal. Hematological and biochemical investigations revealed no abnormalities. Furthermore, histological analysis of FP-treated rats' vital organs revealed no pathological changes. CONCLUSION: Overall, our findings imply that FP 6c, 30c and 200c potencies are safe and do not cause toxicity when given orally to Wistar albino rats for an extended period at a dose of 200 µL/kg.
Subject(s)
Homeopathy , Rats , Female , Male , Animals , Rats, Wistar , Toxicity Tests, Acute , Toxicity Tests, Subchronic , Body Weight , Plant ExtractsABSTRACT
Objective: To identify the genetic markers of spina bifida through a systematic survey of the exome in an Indian cohort. Materials and Methods: Three consecutive patients (P1: 1 year, male; P2: 2.8 years, male; and P3: 10 years, female) with spina bifida (lumbosacral meningomyelocele) underwent whole-exome sequencing (libraries: SureSelect Human All Exon V8; sequencing: 2 * 150 bp paired-end run, 100×) with NovaSeq 6000. Data analysis was performed using SMART-One™ (secondary analysis) and SMARTer™ (tertiary analysis) for automated quality check, alignment (GRCh38/hg38), variant calling, annotation (ClinVar, OMIM, avsnp150, 1000 Genomes v5b, ExAC v0.3, gnomAD v4.0, and esp6500vi2all v0.0.25), v0.0.25), interpretation. The pathogenic and likely pathogenic (ClinVar/ InterVar), non-synonymous, exonic markers (read depth ≥ 5) were matched with the Familial Neural Tube Defects (Version 1.10) panel (FNTD panel). Results: Pathogenic variants overlapping with the FNTD panel were MTRR, CC2D2A, and ZIC2 in P1 and P2, TGIF1 in P1 only, and none in P3. Novel pathogenic/likely pathogenic variants common to all three patients were PRUNE1, PKD1, PDZD2, and DAB2 in the homozygous state as well as in the heterozygous state, PLK1 and NLGN2. The possible role of such markers in etiopathogenesis was explored through a literatur search. Conclusions: The genetic landscape of the spina bifida in an Indian cohort is diverse compared to that reported from other parts of the world. A comprehensive catalog of single-nucleotide variants in the etiopathogenesis of the spina bifida on a background of the Familial Neural Tube Defects Panel has been generated.
ABSTRACT
The sulfolipid sulfoquinovosyl diacylglycerol (SQDG), produced by plants, algae, and cyanobacteria, constitutes a major sulfur reserve in the biosphere. Microbial breakdown of SQDG is critical for the biological utilization of its sulfur. This commences through release of the parent sugar, sulfoquinovose (SQ), catalyzed by sulfoquinovosidases (SQases). These vanguard enzymes are encoded in gene clusters that code for diverse SQ catabolic pathways. To identify, visualize and isolate glycoside hydrolase CAZY-familyâ 31 (GH31) SQases in complex biological environments, we introduce SQ cyclophellitol-aziridine activity-based probes (ABPs). These ABPs label the active site nucleophile of this enzyme family, consistent with specific recognition of the SQ cyclophellitol-aziridine in the active site, as evidenced in the 3D structure of Bacillus megaterium SQase. A fluorescent Cy5-probe enables visualization of SQases in crude cell lysates from bacteria harbouring different SQ breakdown pathways, whilst a biotin-probe enables SQase capture and identification by proteomics. The Cy5-probe facilitates monitoring of active SQase levels during different stages of bacterial growth which show great contrast to more traditional mRNA analysis obtained by RT-qPCR. Given the importance of SQases in global sulfur cycling and in human microbiota, these SQase ABPs provide a new tool with which to study SQase occurrence, activity and stability.
Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Bacillus megaterium/enzymology , Catalytic Domain , Models, Molecular , MethylglucosidesABSTRACT
The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae, and cyanobacteria on a scale of 10 billion tons per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates, so SQ can enter catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. Three-dimensional X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD+-dependent SQases occurs within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases and is distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling.
Subject(s)
Metabolic Networks and Pathways , NAD , NAD/metabolism , Methylglucosides/chemistry , Methylglucosides/metabolism , Plants , Sulfur/metabolismABSTRACT
Endophytic fungi are a significant source of secondary metabolites, which are chemical compounds with biological activities. The present study emphasizes the first-time isolation and identification of such fungi and their pharmacological activities from the medicinal plant Cordia dichotoma, which is native to Jammu, India. The Shannon Wiener diversity index revealed a wide range of fungal endophytes in root (1.992), stem (1.645), and leaf (1.46) tissues. A total of 19 endophytic fungi belonging to nine different genera were isolated from this plant and the majority belonged to the Ascomycota phylum. ITS rRNA gene sequencing was used to identify the fungal strains and they were submitted in NCBI GenBank. The most potent fungal isolate Cladosporium cladosporioides OP870014 had strong antimicrobial, antioxidant, and anticancer activity against MCF-7, HCT-116, and PC-3 cancer cell lines. The LC-MS and GC-MS analyses of the ethyl acetate extract of C. cladosporioides were examined to identify the bioactive metabolites. The major compounds of the crude extract derived from C. cladosporioides OP870014, according to GC-MS, are spiculisporic acid; dibutyl phthalate; phenylethyl alcohol; cyclohexanone, 2,3,3-trimethyl-2-3-methylbutyl; pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl);2,5-piperazinedione,3,6-bis(2-methylpropyl); and heneicosane which possessed antimicrobial, anticancerous, and antioxidant activities. The findings revealed that C. dichotoma has the capacity to host a wide variety of fungal endophytes and that secondary metabolites from the endophytic fungus may be a source of alternative naturally occurring antimicrobial, antioxidant, and cytotoxic compounds.
Subject(s)
Anti-Infective Agents , Ascomycota , Cordia , Antioxidants/pharmacology , Antioxidants/metabolism , Endophytes/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Fungi/metabolism , Ascomycota/chemistryABSTRACT
Bacopa monnieri L. (BM; Family: Scrophulariaceae), commonly known as Brahmi, is traditionally used as a nootropic agent. BM also exhibits significant analgesic activity in experimental models of pain. However, the effect of Bacopa monnieri against glutamate-induced nociception in zebrafish is yet to be explored in experimental condition. Therefore, the present study was designed to evaluate the effect of BM against glutamate-induced nociception and brain mitochondrial toxicity in adult zebrafish (Danio rerio). BM at 0.625, 1.25 and 2.5 mg/ml was administered to adult zebrafish and after half an hour glutamate was injected through i.m. route of administration. Indomethacin was used as standard drug. After behavioral analysis, the fish were euthanized and the brain was isolated and stored for further biochemical analysis. BM (1.25 and 2.5 mg/ml) and indomethacin significantly attenuated the glutamate-induced increase in number of line crossing compared to control group animals. Additionally, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate induced increase in cytosolic calcium level. Further, there was a substantial improvement in mitochondrial function, integrity and bioenergetics in term of respiratory control rate and ADP/O in zebrafish brain. Moreover, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate-induced mitochondria-dependent apoptosis in zebrafish brain. Therefore, BM could be a potential alternative drug candidate in the management of pain.
Subject(s)
Bacopa , Animals , Brain , Glutamic Acid/toxicity , Nociception , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , ZebrafishABSTRACT
In spike-timing-dependent plasticity (STDP), the direction and degree of synaptic modification are determined by the coherence of pre- and postsynaptic activities within a neuron. However, in the adult rat hippocampus, it remains unclear whether STDP-like mechanisms in a neuronal population induce synaptic potentiation of a long duration. Thus, we asked whether the magnitude and maintenance of synaptic plasticity in a population of CA1 neurons differ as a function of the temporal order and interval between pre- and postsynaptic activities. Modulation of the relative timing of Schaffer collateral fibers (presynaptic component) and CA1 axons (postsynaptic component) stimulations resulted in an asymmetric population STDP (pSTDP). The resulting potentiation in response to 20 pairings at 1 Hz was largest in magnitude and most persistent (4 h) when presynaptic activity coincided with or preceded postsynaptic activity. Interestingly, when postsynaptic activation preceded presynaptic stimulation by 20 ms, an immediate increase in field excitatory postsynaptic potentials was observed, but it eventually transformed into a synaptic depression. Furthermore, pSTDP engaged in selective forms of late-associative activity: It facilitated the maintenance of tetanization-induced early long-term potentiation (LTP) in neighboring synapses but not early long-term depression, reflecting possible mechanistic differences with classical tetanization-induced LTP. The data demonstrate that a pairing of pre- and postsynaptic activities in a neuronal population can greatly reduce the required number of synaptic plasticity-evoking events and induce a potentiation of a degree and duration similar to that with repeated tetanization. Thus, pSTDP determines synaptic efficacy in the hippocampal CA3-CA1 circuit and could bias the CA1 neuronal population toward potentiation in future events.
Subject(s)
Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Action Potentials/physiology , Animals , CA1 Region, Hippocampal/physiology , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiology , Male , Neurons/physiology , Patch-Clamp Techniques , Rats , Rats, Wistar , Synapses/physiology , Temporal LobeABSTRACT
Sulfoquinovose (SQ), a derivative of glucose with a C6-sulfonate, is produced by photosynthetic organisms and is the headgroup of the sulfolipid sulfoquinovosyl diacylglycerol. The degradation of SQ allows recycling of its elemental constituents and is important in the global sulfur and carbon biogeochemical cycles. Degradation of SQ by bacteria is achieved through a range of pathways that fall into two main groups. One group involves scission of the 6-carbon skeleton of SQ into two fragments with metabolic utilization of carbons 1-3 and excretion of carbons 4-6 as dihydroxypropanesulfonate or sulfolactate that is biomineralized to sulfite/sulfate by other members of the microbial community. The other involves the complete metabolism of SQ by desulfonylation involving cleavage of the C-S bond to release sulfite and glucose, the latter of which can enter glycolysis. The discovery of sulfoglycolytic pathways has revealed a wide range of novel enzymes and SQ binding proteins. Biochemical and structural characterization of the proteins and enzymes in these pathways have illuminated how the sulfonate group is recognized by Nature's catalysts, supporting bioinformatic annotation of sulfoglycolytic enzymes, and has identified functional and structural relationships with the pathways of glycolysis.
Subject(s)
Bacteria , Methylglucosides , Computational Biology , PhotosynthesisABSTRACT
The Pictet-Spengler reaction is a valuable route to 1,2,3,4-tetrahydro-ß-carboline (THBC) and isoquinoline scaffolds found in many important pharmaceuticals. Strictosidine synthase (STR) catalyzes the Pictet-Spengler condensation of tryptamine and the aldehyde secologanin to give (S)-strictosidine as a key intermediate in indole alkaloid biosynthesis. STRs also accept short-chain aliphatic aldehydes to give enantioenriched alkaloid products with up to 99% ee STRs are thus valuable asymmetric organocatalysts for applications in organic synthesis. The STR catalysis of reactions of small aldehydes gives an unexpected switch in stereopreference, leading to formation of the (R)-products. Here we report a rationale for the formation of the (R)-configured products by the STR enzyme from Ophiorrhiza pumila (OpSTR) using a combination of X-ray crystallography, mutational, and molecular dynamics (MD) studies. We discovered that short-chain aldehydes bind in an inverted fashion compared to secologanin leading to the inverted stereopreference for the observed (R)-product in those cases. The study demonstrates that the same catalyst can have two different productive binding modes for one substrate but give different absolute configuration of the products by binding the aldehyde substrate differently. These results will guide future engineering of STRs and related enzymes for biocatalytic applications.
Subject(s)
Carbon-Nitrogen Lyases/metabolism , Catalysis , Protein Binding , Stereoisomerism , Substrate SpecificityABSTRACT
Glycosylphosphatidylinositols (GPIs) anchored proteins are commonly localized onto lipid rafts. These extracellular proteins participate in a variety of cellular functions, including as receptors for viruses and toxins. Intracellular trafficking of World Health Organization recognized mosquito-larvicidal BinAB toxin is mediated via GPI-anchored Cqm1 receptor protein in Culex mosquitoes. We confirmed conformational change in Cqm1 dimer on interaction with BinA/BinB proteins by dynamic light scattering, modelling of hydrodynamic parameters using the atomic structures, and synchrotron Small Angle solution X-ray scattering (SAXS). A reliable model of the receptor-BinB complex was also constructed from joint SAXS/SANS refinement. We confirmed electrostatic interactions of the Cqm1 ectodomain with lipid rafts reconstituted in model membranes and report receptor-dependent impairment of model liposomes by BinA/B proteins. Liposomal disruption was toxin concentration-dependent as monitored by the release of encapsulated carboxyfluorescein dye. Interestingly, BinA alone, without BinB, showed efficient efflux of the fluorescent dye in agreement with the reported high larvicidal activity of BinA variants. The study provides insight into BinA/B toxin internalization mechanism in the membrane model that is toxin internalization is mediated via receptor-dependent pore formation mechanism. It also suggests a tangible and environmentally safe strategy for control of mosquito population.
Subject(s)
Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Liposomes , Animals , Biological Transport , Culex , Culicidae , Liposomes/chemistry , Models, Molecular , Molecular Conformation , Molecular Weight , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Protein Multimerization , Protein Transport , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Scattering, Small Angle , Structure-Activity Relationship , X-Ray DiffractionABSTRACT
Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.
Subject(s)
Bacterial Proteins/metabolism , Glycerol/metabolism , Methylglucosides/metabolism , Proteome/metabolism , Rhizobium leguminosarum/metabolism , ProteomicsABSTRACT
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is conventionally considered to be solely dependent on local protein synthesis. Given the impact of epigenetics on memory, the intriguing question is whether epigenetic regulation influences mGluR-LTD as well. G9a/GLP histone lysine methyltransferase complex is crucial for brain development and goal-directed learning as well as for drug-addiction. In this study, we analyzed whether the epigenetic regulation by G9a/GLP complex affects mGluR-LTD in CA1 hippocampal pyramidal neurons of 5-7 weeks old male Wistar rats. In hippocampal slices with intact CA1 dendritic regions, inhibition of G9a/GLP activity abolished mGluR-LTD. The inhibition of this complex upregulated the expression of plasticity proteins like PKMζ, which mediated the prevention of mGluR-LTD expression by regulating the NSF-GluA2-mediated trafficking of AMPA receptors towards the postsynaptic site. G9a/GLP inhibition during the induction of mGluR-LTD also downregulated the protein levels of phosphorylated-GluA2 and Arc. Interestingly, G9a/GLP inhibition could not impede the mGluR-LTD when the cell-body was severed. Our study highlights the role of G9a/GLP complex in intact neuronal network as a bidirectional switch; when turned on, it facilitates the expression of mGluR-LTD, and when turned off, it promotes the expression of long-term potentiation.
Subject(s)
CA1 Region, Hippocampal/physiology , Histone-Lysine N-Methyltransferase/metabolism , Long-Term Synaptic Depression/physiology , Pyramidal Cells/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Male , Rats , Rats, WistarABSTRACT
Various epigenetic modifications, including histone lysine methylation, play an integral role in learning and memory. The importance of the histone lysine methyltransferase complex G9a/GLP and its associated histone H3 lysine K9 dimethylation in memory formation and cognition, has garnered the attention of researchers in the past decade. Recent studies feature G9a/GLP as the 'bidirectional regulator of synaptic plasticity', the neural correlate of memory. As the 'title' suggests, G9a/GLP participates in the maintenance of both long-term potentiation (LTP) and long-term depression (LTD). This complex is demonstrated to mostly suppress LTP-related plasticity-related products (PRPs). Notably, our recent paper also shows that G9a/GLP facilitates LTD maintenance in intact hippocampal slices - shedding light on the overlooked influence of epigenetics on LTD. Although the exact mechanisms of G9a/GLP activity regulation in cognition remain elusive, pharmacological inhibition of G9a/GLP presents a new avenue of therapeutic intervention in epigenetic dysfunction-related cognitive deficits.
Subject(s)
Brain/physiology , Epigenesis, Genetic/physiology , Histone-Lysine N-Methyltransferase/physiology , Learning/physiology , Neuronal Plasticity/physiology , Animals , Brain/metabolism , Brain/physiopathology , HumansABSTRACT
Pedalium murex is widely practiced in Ayurveda for the treatment of sexual disorders, but their detailed scientific evaluations are still unexplored. Therefore, the present study was conducted to assess the effect of methanolic fruit fraction of P. murex (MfPm) against sulphasalazine (SSZ) induced male reproductive disruption. MfPm and Clomiphene citrate were orally administered to SSZ (100 mg/kg b.wt) induced infertile rats at the dose of 50 and 10 mg/kg b.wt, respectively, for 60 days. MfPm treatment promoted a significant (p < 0.01) improvement in fertility (~70%), sperm motility (21%), and sperm density (11.20% and 12.30%). MfPm administration restored the serum luteinizing hormone, follicle-stimulating hormone, and testosterone levels back to their normal range in a significant (p < 0.01) manner and also significantly (p < 0.01) altered the level of biochemical parameters in treated rats. Furthermore, histological examination showed an improvement in spermatogenesis, as well as regeneration in the testicular architecture observed with increased germinal and interstitial cell count in response to MfPm treated rats. In conclusion, the results suggest that MfPm showed a significant modulatory effect against SSZ induced male reproductive disruption via possible mode of action such as spermatogenic and androgenic nature, therefore, justifying the traditional use of this plant in the treatment of reproductive disruption.