Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Crit Care Med ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833560

ABSTRACT

OBJECTIVES: Data to support epinephrine dosing intervals during cardiopulmonary resuscitation (CPR) are conflicting. The objective of this study was to evaluate the association between epinephrine dosing intervals and outcomes. We hypothesized that dosing intervals less than 3 minutes would be associated with improved neurologic survival compared with greater than or equal to 3 minutes. DESIGN: This study is a secondary analysis of The ICU-RESUScitation Project (NCT028374497), a multicenter trial of a quality improvement bundle of physiology-directed CPR training and post-cardiac arrest debriefing. SETTING: Eighteen PICUs and pediatric cardiac ICUs in the United States. PATIENTS: Subjects were 18 years young or younger and 37 weeks old or older corrected gestational age who had an index cardiac arrest. Patients who received less than two doses of epinephrine, received extracorporeal CPR, or had dosing intervals greater than 8 minutes were excluded. INTERVENTIONS: The primary exposure was an epinephrine dosing interval of less than 3 vs. greater than or equal to 3 minutes. MEASUREMENTS AND MAIN RESULTS: The primary outcome was survival to discharge with a favorable neurologic outcome defined as a Pediatric Cerebral Performance Category score of 1-2 or no change from baseline. Regression models evaluated the association between dosing intervals and: 1) survival outcomes and 2) CPR duration. Among 382 patients meeting inclusion and exclusion criteria, median age was 0.9 years (interquartile range 0.3-7.6 yr) and 45% were female. After adjustment for confounders, dosing intervals less than 3 minutes were not associated with survival with favorable neurologic outcome (adjusted relative risk [aRR], 1.10; 95% CI, 0.84-1.46; p = 0.48) but were associated with improved sustained return of spontaneous circulation (ROSC) (aRR, 1.21; 95% CI, 1.07-1.37; p < 0.01) and shorter CPR duration (adjusted effect estimate, -9.5 min; 95% CI, -14.4 to -4.84 min; p < 0.01). CONCLUSIONS: In patients receiving at least two doses of epinephrine, dosing intervals less than 3 minutes were not associated with neurologic outcome but were associated with sustained ROSC and shorter CPR duration.

2.
Pediatr Crit Care Med ; 25(1): 4-14, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37678381

ABSTRACT

OBJECTIVES: To assess associations between outcome and cardiopulmonary resuscitation (CPR) quality for in-hospital cardiac arrest (IHCA) in children with medical cardiac, surgical cardiac, or noncardiac disease. DESIGN: Secondary analysis of a multicenter cluster randomized trial, the ICU-RESUScitation Project (NCT02837497, 2016-2021). SETTING: Eighteen PICUs. PATIENTS: Children less than or equal to 18 years old and greater than or equal to 37 weeks postconceptual age receiving chest compressions (CC) of any duration during the study. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 1,100 children with IHCA, there were 273 medical cardiac (25%), 383 surgical cardiac (35%), and 444 noncardiac (40%) cases. Favorable neurologic outcome was defined as no more than moderate disability or no worsening from baseline Pediatric Cerebral Performance Category at discharge. The medical cardiac group had lower odds of survival with favorable neurologic outcomes compared with the noncardiac group (48% vs 55%; adjusted odds ratio [aOR] [95% CI], aOR 0.59 [95% CI, 0.39-0.87], p = 0.008) and surgical cardiac group (48% vs 58%; aOR 0.64 [95% CI, 0.45-0.9], p = 0.01). We failed to identify a difference in favorable outcomes between surgical cardiac and noncardiac groups. We also failed to identify differences in CC rate, CC fraction, ventilation rate, intra-arrest average target diastolic or systolic blood pressure between medical cardiac versus noncardiac, and surgical cardiac versus noncardiac groups. The surgical cardiac group had lower odds of achieving target CC depth compared to the noncardiac group (OR 0.15 [95% CI, 0.02-0.52], p = 0.001). We failed to identify a difference in the percentage of patients achieving target CC depth when comparing medical cardiac versus noncardiac groups. CONCLUSIONS: In pediatric IHCA, medical cardiac patients had lower odds of survival with favorable neurologic outcomes compared with noncardiac and surgical cardiac patients. We failed to find differences in CPR quality between medical cardiac and noncardiac patients, but there were lower odds of achieving target CC depth in surgical cardiac compared to noncardiac patients.


Subject(s)
Cardiac Surgical Procedures , Cardiopulmonary Resuscitation , Heart Arrest , Heart Diseases , Child , Humans , Heart Arrest/therapy , Heart Diseases/complications , Heart Diseases/therapy , Hospitals
3.
Pediatr Crit Care Med ; 25(4): 312-322, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38088765

ABSTRACT

OBJECTIVES: Cannulation for extracorporeal membrane oxygenation during active extracorporeal cardiopulmonary resuscitation (ECPR) is a method to rescue patients refractory to standard resuscitation. We hypothesized that early arrest hemodynamics and end-tidal C o2 (ET co2 ) are associated with survival to hospital discharge with favorable neurologic outcome in pediatric ECPR patients. DESIGN: Preplanned, secondary analysis of pediatric Utstein, hemodynamic, and ventilatory data in ECPR patients collected during the 2016-2021 Improving Outcomes from Pediatric Cardiac Arrest study; the ICU-RESUScitation Project (ICU-RESUS; NCT02837497). SETTING: Eighteen ICUs participated in ICU-RESUS. PATIENTS: There were 97 ECPR patients with hemodynamic waveforms during cardiopulmonary resuscitation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Overall, 71 of 97 patients (73%) were younger than 1 year old, 82 of 97 (85%) had congenital heart disease, and 62 of 97 (64%) were postoperative cardiac surgical patients. Forty of 97 patients (41%) survived with favorable neurologic outcome. We failed to find differences in diastolic or systolic blood pressure, proportion achieving age-based target diastolic or systolic blood pressure, or chest compression rate during the initial 10 minutes of CPR between patients who survived with favorable neurologic outcome and those who did not. Thirty-five patients had ET co2 data; of 17 survivors with favorable neurologic outcome, four of 17 (24%) had an average ET co2 less than 10 mm Hg and two (12%) had a maximum ET co2 less than 10 mm Hg during the initial 10 minutes of resuscitation. CONCLUSIONS: We did not identify an association between early hemodynamics achieved by high-quality CPR and survival to hospital discharge with favorable neurologic outcome after pediatric ECPR. Candidates for ECPR with ET co2 less than 10 mm Hg may survive with favorable neurologic outcome.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Infant , Child , Humans , Cardiopulmonary Resuscitation/methods , Carbon Dioxide , Heart Arrest/therapy , Hemodynamics , Intensive Care Units , Retrospective Studies
4.
Crit Care Med ; 51(1): 91-102, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36519983

ABSTRACT

OBJECTIVES: Arterial diastolic blood pressure (DBP) greater than 25 mm Hg in infants and greater than 30 mm Hg in children greater than 1 year old during cardiopulmonary resuscitation (CPR) was associated with survival to hospital discharge in one prospective study. We sought to validate these potential hemodynamic targets in a larger multicenter cohort. DESIGN: Prospective observational study. SETTING: Eighteen PICUs in the ICU-RESUScitation prospective trial from October 2016 to March 2020. PATIENTS: Children less than or equal to 18 years old with CPR greater than 30 seconds and invasive blood pressure (BP) monitoring during CPR. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Invasive BP waveform data and Utstein-style CPR data were collected, including prearrest patient characteristics, intra-arrest interventions, and outcomes. Primary outcome was survival to hospital discharge, and secondary outcomes were return of spontaneous circulation (ROSC) and survival to hospital discharge with favorable neurologic outcome. Multivariable Poisson regression models with robust error estimates evaluated the association of DBP greater than 25 mm Hg in infants and greater than 30 mm Hg in older children with these outcomes. Among 1,129 children with inhospital cardiac arrests, 413 had evaluable DBP data. Overall, 85.5% of the patients attained thresholds of mean DBP greater than or equal to 25 mm Hg in infants and greater than or equal to 30 mm Hg in older children. Initial return of circulation occurred in 91.5% and 25% by placement on extracorporeal membrane oxygenator. Survival to hospital discharge occurred in 58.6%, and survival with favorable neurologic outcome in 55.4% (i.e. 94.6% of survivors had favorable neurologic outcomes). Mean DBP greater than 25 mm Hg for infants and greater than 30 mm Hg for older children was significantly associated with survival to discharge (adjusted relative risk [aRR], 1.32; 1.01-1.74; p = 0.03) and ROSC (aRR, 1.49; 1.12-1.97; p = 0.002) but did not reach significance for survival to hospital discharge with favorable neurologic outcome (aRR, 1.30; 0.98-1.72; p = 0.051). CONCLUSIONS: These validation data demonstrate that achieving mean DBP during CPR greater than 25 mm Hg for infants and greater than 30 mm Hg for older children is associated with higher rates of survival to hospital discharge, providing potential targets for DBP during CPR.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Infant , Child , Humans , Adolescent , Prospective Studies , Blood Pressure , Patient Discharge
5.
J Pediatr ; 262: 113624, 2023 11.
Article in English | MEDLINE | ID: mdl-37473994

ABSTRACT

OBJECTIVE: To evaluate the clinical impact of an institutional thromboprophylaxis protocol in patients with multisystem inflammatory syndrome in children (MIS-C), who are at increased risk for thromboembolism (TE). STUDY DESIGN: We conducted a single-center retrospective cohort study of children less than 18 years between March 2020 and December 2021. Eligible patients were confirmed with MIS-C and were managed with a standardized multidisciplinary treatment approach that included a thromboprophylaxis protocol to guide and unify clinical practice. For high-risk patients, prophylactic dose enoxaparin (target anti-Factor Xa 0.1-0.3 U/mL) was added. In high-risk patients with TE risk factors persistent at hospital discharge, thromboprophylaxis was prescribed for an additional 30 days. RESULTS: Of 135 patients with MIS-C, 124 (92%) required intensive care unit stay and 64 (47%) required a central venous catheter for a median duration of 5 days (IQR, 4-7). Prophylactic dose enoxaparin was initiated in 116 out of 121 patients (96%) deemed high-risk per our protocol at a median of 1 day after admission [IQR, 0-3] achieving target levels at a median of 1 day [IQR, 1-2]. The median initial anti-Factor Xa level was 0.13 u/mL [IQR, 0.05-0.19]. One patient (0.7%) developed symptomatic noncatheter related superficial vein thrombosis requiring therapeutic anticoagulation. Thromboprophylaxis was extended for 30 days after discharge in 108 out of 135 patients (80%). Bleeding events occurred in 5 patients during hospitalization (4.2%). All bleeding events were clinically relevant nonmajor bleeding. There were no deaths. CONCLUSIONS: Implementation of an institutional standardized thromboprophylaxis protocol in MIS-C was feasible and led to timely initiation of prophylactic anticoagulation and low rates of TEs and bleeding complications.


Subject(s)
Enoxaparin , Venous Thromboembolism , Child , Humans , Enoxaparin/therapeutic use , Anticoagulants/therapeutic use , Retrospective Studies , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control , Hemorrhage/chemically induced , Hemorrhage/complications
6.
Crit Care ; 27(1): 388, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805481

ABSTRACT

INTRODUCTION: Though early hypotension after pediatric in-hospital cardiac arrest (IHCA) is associated with inferior outcomes, ideal post-arrest blood pressure (BP) targets have not been established. We aimed to leverage prospectively collected BP data to explore the association of post-arrest BP thresholds with outcomes. We hypothesized that post-arrest systolic and diastolic BP thresholds would be higher than the currently recommended post-cardiopulmonary resuscitation BP targets and would be associated with higher rates of survival to hospital discharge. METHODS: We performed a secondary analysis of prospectively collected BP data from the first 24 h following return of circulation from index IHCA events enrolled in the ICU-RESUScitation trial (NCT02837497). The lowest documented systolic BP (SBP) and diastolic BP (DBP) were percentile-adjusted for age, height and sex. Receiver operator characteristic curves and cubic spline analyses controlling for illness category and presence of pre-arrest hypotension were generated exploring the association of lowest post-arrest SBP and DBP with survival to hospital discharge and survival to hospital discharge with favorable neurologic outcome (Pediatric Cerebral Performance Category of 1-3 or no change from baseline). Optimal cutoffs for post-arrest BP thresholds were based on analysis of receiver operator characteristic curves and spline curves. Logistic regression models accounting for illness category and pre-arrest hypotension examined the associations of these thresholds with outcomes. RESULTS: Among 693 index events with 0-6 h post-arrest BP data, identified thresholds were: SBP > 10th percentile and DBP > 50th percentile for age, sex and height. Fifty-one percent (n = 352) of subjects had lowest SBP above threshold and 50% (n = 346) had lowest DBP above threshold. SBP and DBP above thresholds were each associated with survival to hospital discharge (SBP: aRR 1.21 [95% CI 1.10, 1.33]; DBP: aRR 1.23 [1.12, 1.34]) and survival to hospital discharge with favorable neurologic outcome (SBP: aRR 1.22 [1.10, 1.35]; DBP: aRR 1.27 [1.15, 1.40]) (all p < 0.001). CONCLUSIONS: Following pediatric IHCA, subjects had higher rates of survival to hospital discharge and survival to hospital discharge with favorable neurologic outcome when BP targets above a threshold of SBP > 10th percentile for age and DBP > 50th percentile for age during the first 6 h post-arrest.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Hypotension , Child , Humans , Blood Pressure , Heart Arrest/complications , Heart Arrest/therapy , Hypotension/complications , Hospital Mortality , Intensive Care Units
7.
Pediatr Crit Care Med ; 24(1): 25-33, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36516349

ABSTRACT

OBJECTIVES: To describe trends in critical illness from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children over the course of the COVID-19 pandemic. We hypothesized that PICU admission rates were higher in the Omicron period compared with the original outbreak but that fewer patients needed endotracheal intubation. DESIGN: Retrospective cohort study. SETTING: This study took place in nine U.S. PICUs over 3 weeks in January 2022 (Omicron period) compared with 3 weeks in March 2020 (original period). PATIENTS: Patients less than or equal to 21 years old who screened positive for SARS-CoV-2 infection by polymerase chain reaction or hospital-based rapid antigen test and were admitted to a PICU or intermediate care unit were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 267 patients (239 Omicron and 28 original) were reviewed. Forty-five patients in the Omicron cohort had incidental SARS-CoV-2 and were excluded from analysis. The Omicron cohort patients were younger compared with the original cohort patients (median [interquartile range], 6 yr [1.3-13.3 yr] vs 14 yr [8.3-17.3 yr]; p = 0.001). The Omicron period, compared with the original period, was associated with an average increase in COVID-19-related PICU admissions of 13 patients per institution (95% CI, 6-36; p = 0.008), which represents a seven-fold increase in the absolute number admissions. We failed to identify an association between cohort period (Omicron vs original) and odds of intubation (odds ratio, 0.7; 95% CI, 0.3-1.7). However, we cannot exclude the possibility of up to 70% reduction in intubation. CONCLUSIONS: COVID-19-related PICU admissions were seven times higher in the Omicron wave compared with the original outbreak. We could not exclude the possibility of up to 70% reduction in use of intubation in the Omicron versus original epoch, which may represent differences in PICU/hospital admission policy in the later period, or pattern of disease, or possibly the impact of vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , United States/epidemiology , COVID-19/epidemiology , Retrospective Studies , Cohort Studies , Pandemics , Critical Illness , Patient Acuity
8.
Pediatr Crit Care Med ; 23(3): e145-e152, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34636357

ABSTRACT

OBJECTIVES: Multisystem inflammatory syndrome in children is a newly defined complication of severe acute respiratory syndrome coronavirus 2 infection that can result in cardiogenic shock in the pediatric population. Early detection of cardiac dysfunction is imperative in directing therapy and identifying patients at highest risk for deterioration. This study compares the strengths of conventional and strain echocardiography in identifying cardiac dysfunction in critically ill children with multisystem inflammatory syndrome in children and their association with ICU therapeutic needs and clinical outcomes. DESIGN: Retrospective, observational cohort study. SETTING: A large, quaternary care PICU. PATIENTS: Sixty-five pediatric patients admitted to the PICU with the diagnosis of multisystem inflammatory syndrome in children from March 2020 to March 2021. INTERVENTIONS: Global longitudinal strain four chamber was measured retrospectively by strain echocardiography and compared with conventional echocardiography. Cardiac dysfunction was defined by left ventricular ejection fraction less than 55% and global longitudinal strain four chamber greater than or equal to -17.2%. Clinical variables examined included cardiac biomarkers, immune therapies, and ICU interventions and outcomes. MEASUREMENTS AND MAIN RESULTS: Twenty-four patients (37%) had abnormal left ventricular ejection fraction and 56 (86%) had abnormal global longitudinal strain four chamber. Between patients with normal and abnormal left ventricular ejection fraction, we failed to identify a difference in cardiac biomarker levels, vasoactive use, respiratory support needs, or ICU length of stay. Global longitudinal strain four chamber was associated with maximum cardiac biomarker levels. Abnormal global longitudinal strain four chamber was associated with greater odds of any vasoactive use (odds ratio, 5.8; 95% CI, 1.3-25.3; z-statistic, 2.3; p = 0.021). The number of days of vasoactive infusion was correlated with global longitudinal strain four chamber (r = 0.400; 95% CI, 2.4-3.9; p < 0.001). Children with abnormal strain had longer ICU length of stay (4.5 d vs 2 d; p = 0.014). CONCLUSIONS: Our findings suggest strain echocardiography can detect abnormalities in cardiac function in multisystem inflammatory syndrome in children patients unrecognized by conventional echocardiography. These abnormalities are associated with increased use of intensive care therapies. Evaluation of these patients with strain echocardiography may better identify those with myocardial dysfunction and need for more intensive therapy.


Subject(s)
COVID-19 , Ventricular Dysfunction, Left , COVID-19/complications , COVID-19/diagnostic imaging , Child , Cohort Studies , Critical Illness/therapy , Echocardiography , Humans , Retrospective Studies , SARS-CoV-2 , Stroke Volume , Systemic Inflammatory Response Syndrome , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left
9.
Pediatr Crit Care Med ; 23(10): 784-792, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35880872

ABSTRACT

OBJECTIVES: To evaluate associations between sodium bicarbonate use and outcomes during pediatric in-hospital cardiac arrest (p-IHCA). DESIGN: Prespecified secondary analysis of a prospective, multicenter cluster randomized interventional trial. SETTING: Eighteen participating ICUs of the ICU-RESUScitation Project (NCT02837497). PATIENTS: Children less than or equal to 18 years old and greater than or equal to 37 weeks post conceptual age who received chest compressions of any duration from October 2016 to March 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Child and event characteristics, prearrest laboratory values (2-6 hr prior to p-IHCA), pre- and intraarrest hemodynamics, and outcomes were collected. In a propensity score weighted cohort, the relationships between sodium bicarbonate use and outcomes were assessed. The primary outcome was survival to hospital discharge. Secondary outcomes included return of spontaneous circulation (ROSC) and survival to hospital discharge with favorable neurologic outcome. Of 1,100 index cardiopulmonary resuscitation events, median age was 0.63 years (interquartile range, 0.19-3.81 yr); 528 (48.0%) received sodium bicarbonate; 773 (70.3%) achieved ROSC; 642 (58.4%) survived to hospital discharge; and 596 (54.2%) survived to hospital discharge with favorable neurologic outcome. Among the weighted cohort, sodium bicarbonate use was associated with lower survival to hospital discharge rate (adjusted odds ratio [aOR], 0.7; 95% CI, 0.54-0.92; p = 0.01) and lower survival to hospital discharge with favorable neurologic outcome rate (aOR, 0.69; 95% CI, 0.53-0.91; p = 0.007). Sodium bicarbonate use was not associated with ROSC (aOR, 0.91; 95% CI, 0.62-1.34; p = 0.621). CONCLUSIONS: In this propensity weighted multicenter cohort study of p-IHCA, sodium bicarbonate use was common and associated with lower rates of survival to hospital discharge.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Child , Cohort Studies , Heart Arrest/drug therapy , Humans , Infant , Intensive Care Units , Prospective Studies , Sodium Bicarbonate/therapeutic use
10.
Pediatr Crit Care Med ; 23(11): 908-918, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36053072

ABSTRACT

OBJECTIVES: The COVID-19 pandemic resulted in adaptations to pediatric resuscitation systems of care. The objective of this study was to determine the temporal association between the pandemic and pediatric in-hospital cardiac arrest (IHCA) process of care metrics, cardiopulmonary resuscitation (cardiopulmonary resuscitation) quality, and patient outcomes. DESIGN: Multicenter retrospective analysis of a dataset comprising observations of IHCA outcomes pre pandemic (March 1, 2019 to February 29, 2020) versus pandemic (March 1, 2020 to February 28, 2021). SETTING: Data source was the ICU-RESUScitation Project ("ICU-RESUS;" NCT028374497), a prospective, multicenter, cluster randomized interventional trial. PATIENTS: Children (≤ 18 yr) who received cardiopulmonary resuscitation while admitted to the ICU and were enrolled in ICU-RESUS. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 429 IHCAs meeting inclusion criteria, occurrence during the pandemic period was associated with higher frequency of hypotension as the immediate cause of arrest. Cardiac arrest physiology, cardiopulmonary resuscitation quality metrics, and postarrest physiologic and quality of care metrics were similar between the two periods. Survival with favorable neurologic outcome (Pediatric Cerebral Performance Category score 1-3 or unchanged from baseline) occurred in 102 of 195 subjects (52%) during the pandemic compared with 140 of 234 (60%) pre pandemic ( p = 0.12). Among survivors, occurrence of IHCA during the pandemic period was associated with a greater increase in Functional Status Scale (FSS) (i.e., worsening) from baseline (1 [0-3] vs 0 [0-2]; p = 0.01). After adjustment for confounders, IHCA survival during the pandemic period was associated with a greater increase in FSS from baseline (+1.19 [95% CI, 0.35-2.04] FSS points; p = 0.006) and higher odds of a new FSS-defined morbidity (adjusted odds ratio, 1.88 [95% CI, 1.03-3.46]; p = 0.04). CONCLUSIONS: Using the ICU-RESUS dataset, we found that relative to the year prior, pediatric IHCA during the first year of the COVID-19 pandemic was associated with greater worsening of functional status and higher odds of new functional morbidity among survivors.


Subject(s)
COVID-19 , Cardiopulmonary Resuscitation , Heart Arrest , Child , Humans , Pandemics , COVID-19/epidemiology , COVID-19/therapy , Retrospective Studies , Prospective Studies , Cardiopulmonary Resuscitation/methods , Heart Arrest/epidemiology , Heart Arrest/therapy
11.
J Ultrasound Med ; 41(12): 3043-3050, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35670278

ABSTRACT

OBJECTIVES: In critically ill, mechanically ventilated adults, diaphragmatic atrophy and reduced diaphragmatic thickening fraction (DTF) has been associated with poor extubation outcomes. Diaphragmatic ultrasound assessment in critically ill pediatric patients shows similar results, though studies are on-going. We sought to explore the feasibility and utility of using DTF, obtained during a spontaneous breathing trial (SBT) in predicting weaning outcomes. METHODS: We conducted a prospective, observational study in a single-center tertiary noncardiac pediatric intensive care unit (PICU) in a children's hospital. Mechanically ventilated pediatric patients were included except for those with preexisting conditions of neuromuscular weakness, diaphragm paresis, or chronic respiratory failure requiring non-invasive or invasive mechanical ventilation at baseline. A convenience sample of 38 patients were included in the study. RESULTS: Weaning failure occurred in 10/38 (26%) instances with 9/38 (24%) occurring due to failed SBT and 1/38 (2%) due to failed extubation requiring reintubation. Median DTF was 24% (IQR: 12-33). DTF was significantly lower in instances of failed SBT, 12% compared to 27% (P < .01). The odds ratio (OR) of SBT failure utilizing: TF < 25% is 12 (CI: 1.33-108.0, Z-score: 2.22, P = .027), TV <5 mL/kg was 10.4 (CI: 1.76-61.67, Z-score: 2.58, P = .01), and combined TV <5 mL/kg and TF < 25% is 17.6 (CI: 1.19-259.61, Z-score: 2.09, P = .04). CONCLUSIONS: Our preliminary study suggests that ultrasound measurements of diaphragm thickening fraction during spontaneous breaths in mechanically ventilated pediatric patients may be a useful addition in predicting weaning readiness.


Subject(s)
Diaphragm , Respiration, Artificial , Adult , Humans , Child , Diaphragm/diagnostic imaging , Critical Illness , Prospective Studies , Ventilator Weaning/methods
12.
Cardiol Young ; 32(5): 718-726, 2022 May.
Article in English | MEDLINE | ID: mdl-34348808

ABSTRACT

BACKGROUND: A novel paediatric disease, multi-system inflammatory syndrome in children, has emerged during the 2019 coronavirus disease pandemic. OBJECTIVES: To describe the short-term evolution of cardiac complications and associated risk factors in patients with multi-system inflammatory syndrome in children. METHODS: Retrospective single-centre study of confirmed multi-system inflammatory syndrome in children treated from 29 March, 2020 to 1 September, 2020. Cardiac complications during the acute phase were defined as decreased systolic function, coronary artery abnormalities, pericardial effusion, or mitral and/or tricuspid valve regurgitation. Patients with or without cardiac complications were compared with chi-square, Fisher's exact, and Wilcoxon rank sum. RESULTS: Thirty-nine children with median (interquartile range) age 7.8 (3.6-12.7) years were included. Nineteen (49%) patients developed cardiac complications including systolic dysfunction (33%), valvular regurgitation (31%), coronary artery abnormalities (18%), and pericardial effusion (5%). At the time of the most recent follow-up, at a median (interquartile range) of 49 (26-61) days, cardiac complications resolved in 16/19 (84%) patients. Two patients had persistent mild systolic dysfunction and one patient had persistent coronary artery abnormality. Children with cardiac complications were more likely to have higher N-terminal B-type natriuretic peptide (p = 0.01), higher white blood cell count (p = 0.01), higher neutrophil count (p = 0.02), severe lymphopenia (p = 0.05), use of milrinone (p = 0.03), and intensive care requirement (p = 0.04). CONCLUSION: Patients with multi-system inflammatory syndrome in children had a high rate of cardiac complications in the acute phase, with associated inflammatory markers. Although cardiac complications resolved in 84% of patients, further long-term studies are needed to assess if the cardiac abnormalities (transient or persistent) are associated with major cardiac events.


Subject(s)
COVID-19 , Cardiovascular Abnormalities , Coronary Artery Disease , Pericardial Effusion , COVID-19/complications , Child , Child, Preschool , Humans , Pericardial Effusion/etiology , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
13.
JAMA ; 327(10): 934-945, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35258533

ABSTRACT

Importance: Approximately 40% of children who experience an in-hospital cardiac arrest survive to hospital discharge. Achieving threshold intra-arrest diastolic blood pressure (BP) targets during cardiopulmonary resuscitation (CPR) and systolic BP targets after the return of circulation may be associated with improved outcomes. Objective: To evaluate the effectiveness of a bundled intervention comprising physiologically focused CPR training at the point of care and structured clinical event debriefings. Design, Setting, and Participants: A parallel, hybrid stepped-wedge, cluster randomized trial (Improving Outcomes from Pediatric Cardiac Arrest-the ICU-Resuscitation Project [ICU-RESUS]) involving 18 pediatric intensive care units (ICUs) from 10 clinical sites in the US. In this hybrid trial, 2 clinical sites were randomized to remain in the intervention group and 2 in the control group for the duration of the study, and 6 were randomized to transition from the control condition to the intervention in a stepped-wedge fashion. The index (first) CPR events of 1129 pediatric ICU patients were included between October 1, 2016, and March 31, 2021, and were followed up to hospital discharge (final follow-up was April 30, 2021). Intervention: During the intervention period (n = 526 patients), a 2-part ICU resuscitation quality improvement bundle was implemented, consisting of CPR training at the point of care on a manikin (48 trainings/unit per month) and structured physiologically focused debriefings of cardiac arrest events (1 debriefing/unit per month). The control period (n = 548 patients) consisted of usual pediatric ICU management of cardiac arrest. Main Outcomes and Measures: The primary outcome was survival to hospital discharge with a favorable neurologic outcome defined as a Pediatric Cerebral Performance Category score of 1 to 3 or no change from baseline (score range, 1 [normal] to 6 [brain death or death]). The secondary outcome was survival to hospital discharge. Results: Among 1389 cardiac arrests experienced by 1276 patients, 1129 index CPR events (median patient age, 0.6 [IQR, 0.2-3.8] years; 499 girls [44%]) were included and 1074 were analyzed in the primary analysis. There was no significant difference in the primary outcome of survival to hospital discharge with favorable neurologic outcomes in the intervention group (53.8%) vs control (52.4%); risk difference (RD), 3.2% (95% CI, -4.6% to 11.4%); adjusted OR, 1.08 (95% CI, 0.76 to 1.53). There was also no significant difference in survival to hospital discharge in the intervention group (58.0%) vs control group (56.8%); RD, 1.6% (95% CI, -6.2% to 9.7%); adjusted OR, 1.03 (95% CI, 0.73 to 1.47). Conclusions and Relevance: In this randomized clinical trial conducted in 18 pediatric intensive care units, a bundled intervention of cardiopulmonary resuscitation training at the point of care and physiologically focused structured debriefing, compared with usual care, did not significantly improve patient survival to hospital discharge with favorable neurologic outcome among pediatric patients who experienced cardiac arrest in the ICU. Trial Registration: ClinicalTrials.gov Identifier: NCT02837497.


Subject(s)
Cardiopulmonary Resuscitation/education , Heart Arrest/therapy , Nervous System Diseases/etiology , Quality Improvement , Adolescent , Blood Pressure , Child , Child, Preschool , Clinical Competence , Female , Heart Arrest/complications , Hospital Mortality , Humans , Infant , Infant, Newborn , Intensive Care Units, Pediatric , Male , Survival Analysis , Treatment Outcome
14.
J Pediatr ; 237: 125-135.e18, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34181987

ABSTRACT

OBJECTIVE: To assess demographic, clinical, and biomarker features distinguishing patients with multisystem inflammatory syndrome in children (MIS-C); compare MIS-C sub-phenotypes; identify cytokine biosignatures; and characterize viral genome sequences. STUDY DESIGN: We performed a prospective observational cohort study of 124 children hospitalized and treated under the institutional MIS-C Task Force protocol from March to September 2020 at Children's National, a quaternary freestanding children's hospital in Washington, DC. Of this cohort, 63 of the patients had the diagnosis of MIS-C (39 confirmed, 24 probable) and 61 were from the same cohort of admitted patients who subsequently had an alternative diagnosis (controls). RESULTS: Median age and sex were similar between MIS-C and controls. Black (46%) and Latino (35%) children were over-represented in the MIS-C cohort, with Black children at greatest risk (OR 4.62, 95% CI 1.151-14.10; P = .007). Cardiac complications were more frequent in critically ill patients with MIS-C (55% vs 28%; P = .04) including systolic myocardial dysfunction (39% vs 3%; P = .001) and valvular regurgitation (33% vs 7%; P = .01). Median cycle threshold was 31.8 (27.95-35.1 IQR) in MIS-C cases, significantly greater (indicating lower viral load) than in primary severe acute respiratory syndrome coronavirus 2 infection. Cytokines soluble interleukin 2 receptor, interleukin [IL]-10, and IL-6 were greater in patients with MIS-C compared with controls. Cytokine analysis revealed subphenotype differences between critically ill vs noncritically ill (IL-2, soluble interleukin 2 receptor, IL-10, IL-6); polymerase chain reaction positive vs negative (tumor necrosis factor-α, IL-10, IL-6); and presence vs absence of cardiac abnormalities (IL-17). Phylogenetic analysis of viral genome sequences revealed predominance of GH clade originating in Europe, with no differences comparing patients with MIS-C with patients with primary coronavirus disease 19. Treatment was well tolerated, and no children died. CONCLUSIONS: This study establishes a well-characterized large cohort of MIS-C evaluated and treated following a standardized protocol and identifies key clinical, biomarker, cytokine, viral load, and sequencing features. Long-term follow-up will provide opportunity for future insights into MIS-C and its sequelae.


Subject(s)
COVID-19/immunology , Cardiovascular Diseases/etiology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Case-Control Studies , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Infant , Male , Pandemics , Phenotype , Phylogeny , Prospective Studies , Risk Factors , SARS-CoV-2/immunology , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology
15.
Transfus Med ; 31(6): 439-446, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34704638

ABSTRACT

BACKGROUND: Massive blood transfusion is infrequently required by children but can be a lifesaving intervention for haemorrhage or coagulopathy. Product volumes and ratios administered during the initiation of paediatric massive blood transfusion protocol (MBTP) are highly variable and the optimal component ratio is unknown. METHODS/MATERIALS: We performed a single-centre retrospective chart review of patients (<20 years) who received MBTP activation from August 2012 through January 2018. Logistic regression was used to determine the association between MBTP use characteristics (including blood product type and volume transfused, extracorporeal membrane oxygenation [ECMO] support, and cardiac arrest occurrence) and 24-h mortality. "Low" product ratio was defined as a ratio of plasma or platelets to red blood cells (RBCs) of <1:2 and "high" as ≥1:2. RESULTS: Ninety-eight MBTPs were activated for 89 patients (range 1-4 per patient). The most common underlying diagnoses were congenital heart disease (CHD, n = 28, 31.5%), followed by cardiopulmonary disease, and trauma. CHD patients required the greatest volume of RBCs (226.3 ml/kg, 95%CI [160.0, 292.7], p = 0.002) and platelets (46.7 ml/kg, 95%CI [33.2, 60.2], p < 0.001). A "low" product ratio was more common for the MBTP, with its incidence similar among the underlying diagnoses. CONCLUSION: An MBTP developed for trauma patients can be applied to non-trauma patients but standard MBTP components may not be optimal for all children. These findings show that underlying patient diagnoses may be a factor when designing an MBTP for a heterogeneous paediatric population.


Subject(s)
Blood Coagulation Disorders , Wounds and Injuries , Blood Component Transfusion , Blood Transfusion , Child , Hemorrhage , Humans , Plasma , Retrospective Studies , Wounds and Injuries/therapy
17.
JAMA Netw Open ; 7(6): e2413955, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38837160

ABSTRACT

Importance: Pediatric consensus guidelines recommend antibiotic administration within 1 hour for septic shock and within 3 hours for sepsis without shock. Limited studies exist identifying a specific time past which delays in antibiotic administration are associated with worse outcomes. Objective: To determine a time point for antibiotic administration that is associated with increased risk of mortality among pediatric patients with sepsis. Design, Setting, and Participants: This retrospective cohort study used data from 51 US children's hospitals in the Improving Pediatric Sepsis Outcomes collaborative. Participants included patients aged 29 days to less than 18 years with sepsis recognized within 1 hour of emergency department arrival, from January 1, 2017, through December 31, 2021. Piecewise regression was used to identify the inflection point for sepsis-attributable 3-day mortality, and logistic regression was used to evaluate odds of sepsis-attributable mortality after adjustment for potential confounders. Data analysis was performed from March 2022 to February 2024. Exposure: The number of minutes from emergency department arrival to antibiotic administration. Main Outcomes and Measures: The primary outcome was sepsis-attributable 3-day mortality. Sepsis-attributable 30-day mortality was a secondary outcome. Results: A total of 19 515 cases (median [IQR] age, 6 [2-12] years) were included. The median (IQR) time to antibiotic administration was 69 (47-116) minutes. The estimated time to antibiotic administration at which 3-day sepsis-attributable mortality increased was 330 minutes. Patients who received an antibiotic in less than 330 minutes (19 164 patients) had sepsis-attributable 3-day mortality of 0.5% (93 patients) and 30-day mortality of 0.9% (163 patients). Patients who received antibiotics at 330 minutes or later (351 patients) had 3-day sepsis-attributable mortality of 1.2% (4 patients), 30-day mortality of 2.0% (7 patients), and increased adjusted odds of mortality at both 3 days (odds ratio, 3.44; 95% CI, 1.20-9.93; P = .02) and 30 days (odds ratio, 3.63; 95% CI, 1.59-8.30; P = .002) compared with those who received antibiotics within 330 minutes. Conclusions and Relevance: In this cohort of pediatric patients with sepsis, 3-day and 30-day sepsis-attributable mortality increased with delays in antibiotic administration 330 minutes or longer from emergency department arrival. These findings are consistent with the literature demonstrating increased pediatric sepsis mortality associated with antibiotic administration delay. To guide the balance of appropriate resource allocation with time for adequate diagnostic evaluation, further research is needed into whether there are subpopulations, such as those with shock or bacteremia, that may benefit from earlier antibiotics.


Subject(s)
Anti-Bacterial Agents , Emergency Service, Hospital , Sepsis , Time-to-Treatment , Humans , Anti-Bacterial Agents/therapeutic use , Emergency Service, Hospital/statistics & numerical data , Sepsis/mortality , Sepsis/drug therapy , Female , Male , Retrospective Studies , Child , Child, Preschool , Time-to-Treatment/statistics & numerical data , Infant , Adolescent , Infant, Newborn , United States/epidemiology , Time Factors , Hospital Mortality
18.
Ann Am Thorac Soc ; 21(6): 895-906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507645

ABSTRACT

Rationale: Adult and pediatric studies provide conflicting data regarding whether post-cardiac arrest hypoxemia, hyperoxemia, hypercapnia, and/or hypocapnia are associated with worse outcomes. Objectives: We sought to determine whether postarrest hypoxemia or postarrest hyperoxemia is associated with lower rates of survival to hospital discharge, compared with postarrest normoxemia, and whether postarrest hypocapnia or hypercapnia is associated with lower rates of survival, compared with postarrest normocapnia. Methods: An embedded prospective observational study during a multicenter interventional cardiopulmonary resuscitation trial was conducted from 2016 to 2021. Patients ⩽18 years old and with a corrected gestational age of ≥37 weeks who received chest compressions for cardiac arrest in one of the 18 intensive care units were included. Exposures during the first 24 hours postarrest were hypoxemia, hyperoxemia, or normoxemia-defined as lowest arterial oxygen tension/pressure (PaO2) <60 mm Hg, highest PaO2 ⩾200 mm Hg, or every PaO2 60-199 mm Hg, respectively-and hypocapnia, hypercapnia, or normocapnia, defined as lowest arterial carbon dioxide tension/pressure (PaCO2) <30 mm Hg, highest PaCO2 ⩾50 mm Hg, or every PaCO2 30-49 mm Hg, respectively. Associations of oxygenation and carbon dioxide group with survival to hospital discharge were assessed using Poisson regression with robust error estimates. Results: The hypoxemia group was less likely to survive to hospital discharge, compared with the normoxemia group (adjusted relative risk [aRR] = 0.71; 95% confidence interval [CI] = 0.58-0.87), whereas survival in the hyperoxemia group did not differ from that in the normoxemia group (aRR = 1.0; 95% CI = 0.87-1.15). The hypercapnia group was less likely to survive to hospital discharge, compared with the normocapnia group (aRR = 0.74; 95% CI = 0.64-0.84), whereas survival in the hypocapnia group did not differ from that in the normocapnia group (aRR = 0.91; 95% CI = 0.74-1.12). Conclusions: Postarrest hypoxemia and hypercapnia were each associated with lower rates of survival to hospital discharge.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Hypercapnia , Hypoxia , Humans , Heart Arrest/therapy , Heart Arrest/mortality , Male , Female , Prospective Studies , Hypoxia/mortality , Child , Hypercapnia/mortality , Hypercapnia/therapy , Child, Preschool , Cardiopulmonary Resuscitation/methods , Infant , Hypocapnia , Hyperoxia/mortality , Adolescent , Oxygen/blood , Survival Rate , Infant, Newborn , Respiration, Artificial
19.
Resuscitation ; 194: 110068, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052273

ABSTRACT

AIM: Pediatric cardiopulmonary resuscitation (CPR) guidelines recommend starting CPR for heart rates (HRs) less than 60 beats per minute (bpm) with poor perfusion. Objectives were to (1) compare HRs and arterial blood pressures (BPs) prior to CPR among patients with clinician-reported bradycardia with poor perfusion ("BRADY") vs. pulseless electrical activity (PEA); and (2) determine if hemodynamics prior to CPR are associated with outcomes. METHODS AND RESULTS: Prospective observational cohort study performed as a secondary analysis of the ICU-RESUScitation trial (NCT028374497). Comparisons occurred (1) during the 15 seconds "immediately" prior to CPR and (2) over the two minutes prior to CPR, stratified by age (≤1 year, >1 year). Poisson regression models assessed associations between hemodynamics and outcomes. Primary outcome was return of spontaneous circulation (ROSC). Pre-CPR HRs were lower in BRADY vs. PEA (≤1 year: 63.8 [46.5, 87.0] min-1 vs. 120 [93.2, 150.0], p < 0.001; >1 year: 67.4 [54.5, 87.0] min-1 vs. 100 [66.7, 120], p < 0.014). Pre-CPR pulse pressure was higher among BRADY vs. PEA (≤1 year (12.9 [9.0, 28.5] mmHg vs. 10.4 [6.1, 13.4] mmHg, p > 0.001). Pre-CPR pulse pressure ≥ 20 mmHg was associated with higher rates of ROSC among PEA (aRR 1.58 [CI95 1.07, 2.35], p = 0.022) and survival to hospital discharge with favorable neurologic outcome in both groups (BRADY: aRR 1.28 [CI95 1.01, 1.62], p = 0.040; PEA: aRR 1.94 [CI95 1.19, 3.16], p = 0.008). Pre-CPR HR ≥ 60 bpm was not associated with outcomes. CONCLUSIONS: Pulse pressure and HR are used clinically to differentiate BRADY from PEA. A pre-CPR pulse pressure >20 mmHg was associated with improved patient outcomes.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Child , Humans , Cardiopulmonary Resuscitation/methods , Prospective Studies , Heart Arrest/therapy , Hemodynamics , Pressure
20.
Pediatr Pulmonol ; 58(1): 206-212, 2023 01.
Article in English | MEDLINE | ID: mdl-36254734

ABSTRACT

RATIONALE: Children contribute to 5% of coronavirus disease of 2019 (COVID-19)-related hospitalizations in the United States. There is mounting evidence suggesting childhood asthma is a risk factor for severe disease. We hypothesized that asthma is associated with longer length of stay (LOS) and need for respiratory support among children admitted to pediatric intensive care unit (PICU) with COVID-19. METHODS: We reviewed 150 charts of children and young adults with a positive severe acute respiratory syndrome coronavirus 2polymerase chain reaction test admitted to the PICU at Children's National Hospital, Washington, DC between 2020 and 2021. We recorded demographics, anthropometrics, past medical history, clinical course, laboratory findings, imaging, medication usage, respiratory support, and outcomes. Functional Status Scale (FSS), which measures an Intensive Care Unitpatient's physical function, was used to characterize children with multiple comorbidities; FSS and obesity were included as covariates in multivariate analysis. Statistical analysis was performed using SPSS v25.0. RESULTS: Sixty-Eight patients ages 0-21 years met inclusion criteria. Median age was 14.9 years, 55.9% were female, median Body Mass Index percentile was 62, and 42.6% were African American. Compared with those without asthma, patients with asthma averaged longer LOS (20.7 vs. 10.2 days, p = 0.02), with longer PICU stay (15.9 vs. 7.6 days, p = 0.033) and prolonged maximum respiratory support (8.3 vs. 3.3 days, p = 0.016). Adjusted for obesity and poor physical function (FSS > 6), asthma remained a significant predictor of hospital LOS, PICU LOS, and days on maximum respiratory support. CONCLUSION: Asthma can cause severe disease with prolonged need for maximum respiratory support among children with COVID-19.


Subject(s)
Asthma , COVID-19 , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Young Adult , Asthma/epidemiology , Comorbidity , COVID-19/epidemiology , Hospitalization , Hospitals, Pediatric , Intensive Care Units, Pediatric , Length of Stay , Obesity/complications , Obesity/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL