Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Publication year range
1.
Connect Tissue Res ; : 1-19, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246090

ABSTRACT

Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.

2.
Acta Vet Hung ; 72(2): 99-108, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900580

ABSTRACT

Platelet-rich plasma (PRP) has emerged as a cornerstone in veterinary regenerative medicine. The present study evaluated the impact of the operator on the qualitative and quantitative features of non-activated PRP derived from canine whole blood. Blood was collected in anticoagulant acid citrate dextrose from twelve healthy adult dogs and PRP was prepared according to the double-spin method. Both operators followed an identical protocol and utilized the same equipment for PRP preparation from the pooled blood samples. The resulting PRP underwent characterization, classification and coding based on minimum reporting standards. The consistency and internal reliability of different parameters were also assessed using the intraclass correlation coefficient and Cronbach's alpha values. Variables such as white blood cell (WBC) concentration, relative WBC composition and mean platelet volume (MPV) showed poor reliability, and WBC concentration and MPV also had unacceptable internal consistency. Significant differences were observed in several qualitative and quantitative parameters of the prepared PRP, highlighting the influence of the operator even when the same protocol and equipment were used. Our study has direct implications to regenerative medicine, reinforcing the urgency to set minimum requirements for reporting PRP in research studies.


Subject(s)
Platelet-Rich Plasma , Animals , Dogs/blood , Male , Female
3.
Cell Tissue Bank ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542003

ABSTRACT

Biomaterials capable of managing wounds should have essential features like providing a natural microenvironment for wound healing and as support material for stimulating tissue growth. Eggshell membrane (ESM) is a highly produced global waste due to increased egg consumption. The unique and fascinating properties of ESM allow their potential application in tissue regeneration. The wound healing capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs), ESM, and their combination in rabbits with full-thickness skin defect (2 × 2 cm2) was evaluated. Twenty-five clinically healthy New Zealand White rabbits were divided into five groups of five animals each, with group A receiving no treatment (control group), group B receiving only fibrin glue (FG), group C receiving FG and ESM as a dressing, group D receiving FG and BM-MSCs, and group E receiving a combination of FG, ESM, and BM-MSCs. Wound healing was assessed using clinical, macroscopical, photographic, histological, histochemical, hematological, and biochemical analysis. Macroscopic examination of wounds revealed that healing was exceptional in group E, followed by groups D and C, compared to the control group. Histopathological findings revealed improved quality and a faster rate of healing in group E compared to groups A and B. In addition, healing in group B treated with topical FG alone was nearly identical to that in control group A. However, groups C and D showed improved and faster recovery than control groups A and B. The macroscopic, photographic, histological, and histochemical evaluations revealed that the combined use of BM-MSCs, ESM, and FG had superior and faster healing than the other groups.

4.
Indian J Med Res ; 155(1): 91-104, 2022 01.
Article in English | MEDLINE | ID: mdl-35859436

ABSTRACT

There are currently eight vaccines against SARS-CoV-2 that have received Emergency Use Authorization by the WHO that can offer some protection to the world's population during the COVID-19 pandemic. Though research is being published all over the world, public health officials, policymakers and governments are collecting evidence-based information to establish the public health policies. Unfortunately, continued international travel, violations of lockdowns and social distancing, the lack of mask use, the emergence of mutant strains of the virus and lower adherence by a sector of the global population that remains sceptical of the protection offered by vaccines, or about any risks associated with vaccines, hamper these efforts. Here we examine the literature on the efficacy, effectiveness and safety of COVID-19 vaccines, with an emphasis on select categories of individuals and against new SARS-CoV-2 strains. The literature shows that these eight vaccines are highly effective in protecting the population from severe disease and death, but there are some issues concerning safety and adverse effects. Further, booster shots and variant-specific vaccines would also be required.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Communicable Disease Control , Humans , Pandemics/prevention & control , SARS-CoV-2
5.
J Therm Biol ; 110: 103381, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36462872

ABSTRACT

The global warming driven climate change has increased the susceptibility of livestock around the globe to heat stress (HS), which reduces animal productivity and threatens the sustainability of marginal farmers. The objective of this investigation was to evaluate thermo-adaptability between Tharparkar calves (TC), an indigenous milch breed of India and crossbred calves (CC) during induced heat stress in controlled environment. For this purpose, 12 apparently healthy male calves (six in each group) aged 5-6 months, were selected. The experiment was conducted at physiologically comfortable temperature (25 °C), moderate HS (31 °C) and severe HS (37 °C) for 21 days each in a psychrometric chamber. In each experimental day, the calves were exposed to 6 h of heat. There were 7 days of acclimatization period before experiment and 10 days of recovery period at ambient temperature between each 21 day exposure period. During experimental period, the blood was collected at 1st, 6th, 11th, 16th, 21st day and among ten-day recovery period the blood was collected at 5th day. Physiological responses, serum electrolytes, metabolic enzymes profiles, antioxidant capacity, oxidative stress status and general endocrine milieu were studied. Relative mRNA expression study of Heat Shock Protein (HSP) 70, HSP90, induced Nitric Oxide Synthase (iNOS) and endothelial NOS (eNOS) were carried out by qPCR. There was significant (p < 0.05) change in the displacement in rectal temperature, respiration rate, serum alanine aminotransferase level between two breeds at moderate and severe HS. Similar change was observed in total antioxidant capacity, superoxide dismutase, and endocrinological parameters. The comparatively lower mRNA expression of HSP70 and higher expression of HSP90 in TC than CC point the better thermo-adaptability of the same. The results of the experiment indicated that TC are more thermo-adaptable than CC at different modality of stress in controlled temperature conditions.


Subject(s)
Antioxidants , Environment, Controlled , Male , Cattle , Animals , HSP70 Heat-Shock Proteins , Temperature , HSP90 Heat-Shock Proteins/genetics , RNA, Messenger
6.
J Med Virol ; 93(9): 5295-5309, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33990972

ABSTRACT

The human immune system is not adequately equipped to eliminate new microbes and could result in serious damage on first exposure. This is primarily attributed to the exaggerated immune response (inflammatory disease), which may prove detrimental to the host, as evidenced by SARS-CoV-2 infection. From the experiences of Novel Coronavirus Disease-19 to date, male patients are likely to suffer from high-intensity inflammation and disease severity than the female population. Hormones are considered the significant pillars of sex differences responsible for the discrepancy in immune response exhibited by males and females. Females appear to be better equipped to counter invading respiratory viral pathogens, including the novel SARS-CoV-2, than males. It can be hypothesized that females are more shielded from disease severity, probably owing to the diverse action/influence of estrogen and other sex hormones on both cellular (thymus-derived T lymphocytes) and humoral immunity (antibodies).


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19 , Estrogens/immunology , Sex Factors , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Immunity, Humoral , Male , T-Lymphocytes/cytology , T-Lymphocytes/immunology
7.
J Environ Manage ; 280: 111825, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360553

ABSTRACT

The SARS-CoV-2/COVID-19 pandemic has spread across the globe and affected millions of individuals as of the efficient virus transmission potential mediated via multiple virus shedding routes. The presence of SARS-CoV-2 in the stool samples and its prolonged shedding in environmental compartments like sewage and wastewater signifies a potential threat adding to the transmission cycle of this novel virus. The potential role played by the asymptomatic COVID-19 patients in transmitting the disease via the fecal-oral route is now under investigation. Hence, in the present scenario, wastewater-based epidemiology, and sewage surveillance may provide valuable insights into the prevalence of SARS-CoV-2 among the human population and could serve as a sensitive surveillance system and a crucial early warning tool. Further studies are required to determine the survival of SARS-CoV-2 in the environment, transmissibility through wastewater, and the potential to infect humans via the fecal-oral route. Appropriate frameworks with regards to evaluation and analysis of SARS-CoV-2 will help implement appropriate intervention strategies and necessary sanitation practices to ensure virus free clean water supply to have a check on the further spread of this pandemic virus.


Subject(s)
COVID-19 , Pandemics , Humans , Public Health , SARS-CoV-2 , Sewage , Wastewater
8.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 245-256, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31595607

ABSTRACT

Green tea (Camellia sinensis) is a popular herbal plant with abundant health benefits, and thus, it has been used as a potent antioxidant for a long time. Based on the available literature, the diversity and the availability of multifunctional compounds in green tea offer its noteworthy potential against many diseases such as liver and heart diseases, inflammatory conditions and different metabolic syndromes. Owing to its bioactive constituents including caffeine, amino acids, l-theanine, polyphenols/flavonoids and carbohydrates among other potent molecules, green tea has many pharmacological and physiological effects. The effects of green tea include anti-oxidative, anti-inflammatory, anti-arthritic, anti-stress, hypolipidaemic, hypocholesterolaemic, skin/collagen protective, hepatoprotective, anti-diabetic, anti-microbial, anti-infective, anti-parasitic, anti-cancerous, inhibition of tumorigenesis and angiogenesis, anti-mutagenic, and memory and bone health-improving activities. Apart from its utilization in humans, green tea has also played a significant role in livestock production such as in dairy, piggery, goatry and poultry industries. Supplementation of animal feeds with green tea and its products is in line with the modern concepts of organic livestock production. Hence, incorporating green tea or green tea by-products into the diet of poultry and other livestock can enhance the value of the products obtained from these animals. Herein, an effort is made to extend the knowledge on the importance and useful applications of green tea and its important constituents in animal production including poultry. This review will be a guideline for researchers and entrepreneurs who want to explore the utilization of feeds supplemented with green tea and green tea by-products for the enhancement of livestock production.


Subject(s)
Animal Feed/analysis , Glutamates/pharmacology , Livestock , Tea , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary
16.
Vet Res Commun ; 48(3): 1973-1976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671338

ABSTRACT

The widespread application of mesenchymal stem cells (MSCs) in veterinary regenerative medicine highlights their promising therapeutic potential. However, the lack of standardized characterization and reporting practices across studies poses a significant challenge, compromising the assessment of their safety and efficacy. While criteria established for human MSCs serve as a foundation, the unique characteristics of animal-derived MSCs warrant updated guidelines tailored to veterinary medicine. A recent position statement outlining minimal reporting criteria for MSCs in veterinary research reflects efforts to address this need, aiming to enhance research quality and reproducibility. Standardized reporting criteria ensure transparency, facilitate evidence synthesis, and promote best practices adoption in MSC isolation, characterization, and administration. Adherence to minimal reporting criteria is crucial for maintaining scientific rigor and advancing the field of veterinary regenerative medicine. Ongoing collaboration among stakeholders is essential for effective implementation and adherence to updated guidelines, fostering excellence and innovation in MSC-based therapies for animal patients.


Subject(s)
Mesenchymal Stem Cells , Regenerative Medicine , Animals , Regenerative Medicine/standards , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/veterinary , Mesenchymal Stem Cell Transplantation/standards , Mesenchymal Stem Cell Transplantation/methods , Veterinary Medicine/standards , Veterinary Medicine/methods
17.
Top Companion Anim Med ; 58: 100840, 2024.
Article in English | MEDLINE | ID: mdl-37979613

ABSTRACT

Platelets contain a multitude of growth factors and play a crucial role in physiological processes such as thrombogenesis, tissue repair, and angiogenesis. As a result, platelet-derived products have significant potential for efficient utilization in the realm of regenerative medicine due to their therapeutic and biological attributes. Numerous studies have already substantiated the therapeutic viability of platelets in various canine ailments. The existing literature indicates a substantial surge in the clinical application of canine platelets, positioning platelet-derived products as a viable alternative to conventional therapeutic agents. Platelet concentrates, including platelet-rich plasma and platelet-rich fibrin are commonly used as a therapeutic modality in clinical cases. These therapeutic derivatives exhibit effectiveness in tissue regeneration and can serve as complementary therapies. Notably, they offer a cost-effective and easily accessible therapeutic option, which has demonstrated its benefits in chronic inflammatory disorders such as osteoarthritis and tendinitis, ophthalmic conditions, wound healing, and mandibular injuries in canine patients. The broad spectrum of therapeutic effects displayed by platelets is providing researchers with novel perspectives for crafting therapeutic models in future investigations. This review centers on exploring the therapeutic potential of canine platelets across diverse disorders. Further exploration into platelet products, encompassing their preparation and applicability in canine medicine, is imperative. These inquiries hold the promise of unveiling fresh horizons for the domain of regenerative medicine.


Subject(s)
Dog Diseases , Osteoarthritis , Platelet-Rich Plasma , Animals , Dogs , Blood Platelets , Wound Healing , Platelet-Rich Plasma/physiology , Regenerative Medicine , Osteoarthritis/veterinary , Dog Diseases/drug therapy
18.
Tissue Cell ; 88: 102380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615643

ABSTRACT

The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-ß, BMP, Wnt/ß-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Regeneration , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Regeneration/physiology , Animals , Chondrogenesis/physiology , Cartilage/metabolism , Cartilage/physiology , Cell Differentiation , Chondrocytes/metabolism , Chondrocytes/cytology , Signal Transduction
19.
Vet Res Commun ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212813

ABSTRACT

Mesenchymal stem cell (MSC) therapy presents a promising strategy for treating various ocular conditions in veterinary medicine. This review explores the therapeutic potential of MSCs in managing corneal ulcers, immune-mediated keratitis, chronic superficial keratitis, keratoconjunctivitis sicca, retinal degeneration, and ocular burns in feline, equine, and canine patients. Studies have demonstrated the immunomodulatory and regenerative properties of MSCs, highlighting their ability to mitigate inflammation and promote tissue regeneration. Experimental studies have shown the potential of MSC therapy in reducing corneal opacity and vascularization, indicating significant therapeutic advantages. Delivery methods play a crucial role in optimizing the therapeutic efficacy of MSCs in ocular diseases. Various delivery methods, such as intravitreal injection, subconjunctival injection, topical administration, and scaffold-mediated delivery, are being explored to optimize MSC delivery to the target ocular tissues. Clinical trials have shown significant improvements in clinical signs following MSC therapy, underscoring its efficacy in treating ocular diseases. Additionally, tissue engineering approaches incorporating MSCs, growth factors, and scaffolds offer innovative strategies for corneal regeneration and tissue repair. Despite challenges such as standardization of protocols and long-term safety assessment, ongoing research endeavours seek to unlock the full therapeutic potential of MSC therapy in ocular diseases. Future prospects in MSC therapy involve exploring scaffold and hydrogel-based approaches and cell-free therapies leveraging the bioactive molecules released by MSCs. Continued research and development efforts are essential to unlock the full therapeutic potential of MSCs and realize their transformative impact on ocular diseases in veterinary patients.

20.
Tissue Cell ; 90: 102482, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059133

ABSTRACT

The wound healing process in rodents (rats and mice) and lagomorphs (rabbits) predominantly relies on wound contraction rather than re-epithelialization and granulation tissue formation. As a result, existing laboratory animal models for wound healing often fail to mimic human wound healing mechanisms accurately. This study introduces a standardized rabbit model with superior translational potential for skin wound healing research. Two full-thickness dermal wounds were created on the posterior dorsal surface of each rabbit using a standard 2 ×2 cm² template. One of these wounds was randomly selected to be treated as a contraction-suppressed wound by applying a transparent adhesive elastic bandage. At the same time, the other was retained as a standard full-thickness wound. Wound contraction was measured on 7, 14, 21, 28, and 35 days. Histomorphological evaluation was done on day 35 to evaluate the quality of wound healing. The findings indicate that transparent adhesive elastic bandage prolonged the wound healing time and suppressed wound contraction in rabbits. In addition, the healed contraction-suppressed full-thickness wounds had denser and thicker collagen fibers than the healed standard full-thickness wounds, indicating better collagen fiber deposition. Our model achieved a 100 % success rate in maintaining the transparent adhesive elastic bandage in the rabbits. Therefore, we have developed a simple, non-invasive, cost-effective method for preventing wound contraction. Further studies are required to establish the utility of this model for studying wound healing mechanisms and evaluating therapeutic interventions.


Subject(s)
Disease Models, Animal , Skin , Wound Healing , Animals , Rabbits , Skin/injuries , Skin/pathology , Bandages , Collagen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL