ABSTRACT
BACKGROUND: Tumor-based next-generation sequencing is used inconsistently as a tool to tailor treatment of ovarian cancer, yet beyond detection of somatic BRCA1 and BRCA2 mutations, the clinical benefit is not well established. This study aimed to assess the clinical relevance of tumor-based next-generation sequencing (tbNGS) in patients with ovarian cancer. METHODS: This retrospective study included patients with high-grade epithelial ovarian carcinoma. tbNGS results were identified in the electronic medical record using optical character recognition and natural language processing. Genetic, clinical, and demographic information was collected. Progression-free survival (PFS) and overall survival were calculated and compared using log-rank tests. Multivariate Cox regression and clustering analyses were used to identify patterns of genetic alterations associated with survival. RESULTS: Of 1092 patients in the described population, 409 (37.5%) had tbNGS results. Nearly all (96.1% [393/409]) had one or more genetic alterations. In 25.9% (106/409) of patients, an alteration that aligned with a targeted treatment was identified, and in an additional 48.7% (199/409), tbNGS results suggested eligibility for an investigational agent or clinical trial. The most frequent alterations were TP53, PIK3CA, and NF1 mutations, and CCNE1 amplification. Together, BRCA1 and BRCA2 mutations were associated with longer PFS (hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.42-0.92; pĀ =Ā .02), whereas AKT2 amplification was associated with shorter PFS (HR, 3.86; 95% CI, 1.002-14.88; pĀ <Ā .05). Multivariate Cox regression and clustering analyses identified several combinations of genetic alterations that corresponded to outcomes in patients with high-grade serous carcinoma. CONCLUSIONS: tbNGS often yields clinically relevant information. Detailed analysis of population-level tumor genomics may help to identify therapeutic targets and guide development of clinical decision support tools. PLAIN LANGUAGE SUMMARY: Although more and more patients with ovarian cancer are undergoing tumor-based next-generation sequencing to identify genetic mutations in their tumors, the benefits of such testing are not well established. In a group of over 400 patients with ovarian cancer who underwent tumor-based next-generation sequencing in the course of their treatment, nearly all patients had one or more genetic alterations detected, and one out of four patients had a mutation that qualified them for a personalized treatment option.
Subject(s)
Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial/genetics , Retrospective Studies , Ovarian Neoplasms/pathology , Mutation , High-Throughput Nucleotide SequencingABSTRACT
Since the discovery that DNA alterations initiate tumorigenesis, scientists and clinicians have been exploring ways to counter these changes with targeted therapeutics. The sequencing of tumor DNA was initially limited to highly actionable hot spots-areas of the genome that are frequently altered and have an approved matched therapy in a specific tumor type. Large-scale genome sequencing programs quickly developed technological improvements that enabled the deployment of whole-exome and whole-genome sequencing technologies at scale for pristine sample materials in research environments. However, the turning point for precision medicine in oncology was the innovations in clinical laboratories that improved turnaround time, depth of coverage, and the ability to reliably sequence archived, clinically available samples. Today, tumor genome sequencing no longer suffers from significant technical or financial hurdles, and the next opportunity for improvement lies in the optimal utilization of the technologies and data for many different tumor types.
Subject(s)
Genome, Human , Neoplasms/genetics , Precision Medicine , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Neoplasms/diagnosis , Neoplasms/therapyABSTRACT
BACKGROUND: Appendiceal adenocarcinoma (AA) is an orphan disease with unique clinical attributes but often treated as colorectal cancer (CRC). Understanding key molecular differences between AA and CRC is critical. METHODS: We performed retrospective analyses of AA patients (N = 266) with tumour and/or blood next-generation sequencing (NGS) (2013-2018) with in-depth clinicopathological annotation. Overall survival (OS) was examined. For comparison, CRC cohorts annotated for sidedness, consensus molecular subtypes (CMS) and mutations (N = 3283) were used. RESULTS: Blood-NGS identified less RAS/GNAS mutations compared to tissue-NGS (4.2% vs. 60.9%, P < 0.0001) and showed poor concordance with tissue for well-/moderately differentiated tumours. RAS (56.2%), GNAS (28.1%) and TP53 (26.9%) were most frequent mutations. Well/moderately differentiated tumours harboured more RAS (69.2%/64.0% vs. 40.5%) and GNAS (48.7%/32.0% vs. 10.1%) while moderate/poorly differentiated tumours had more TP53 (26.0%/27.8% vs. 7.7%) mutations. Appendiceal adenocarcinoma (compared to CRC) harboured significantly fewer APC (9.1% vs. 55.4%) and TP53 (26.9% vs. 67.5%) and more GNAS mutations (28.1% vs. 2.0%) (P < 0.0001). Appendiceal adenocarcinoma mutation profile did not resemble either right-sided CRC or any of the four CMS in CRC. High grade, but no mutation, was independently predictive of survival. CONCLUSION: Integrated clinico-molecular profiling of AA identified key molecular drivers distinct from CRC. Appendiceal adenocarcinoma has a predominantly grade-driven biology that trumps mutations.
Subject(s)
Adenocarcinoma/genetics , Appendiceal Neoplasms/genetics , Colorectal Neoplasms/genetics , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adult , Aged , Appendiceal Neoplasms/mortality , Appendiceal Neoplasms/pathology , Chromogranins/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , GTP-Binding Protein alpha Subunits, Gs/genetics , Genes, ras , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Neoplasm Grading , Retrospective Studies , Tumor Suppressor Protein p53/geneticsABSTRACT
Recently, comprehensive genomic analyses have allowed a better molecular characterization of diffuse large B-cell lymphoma (DLBCL), offering novel opportunities in patient risk stratification and management. In the era of precision medicine, this has allowed us to move closer toward a more promising therapeutic outcome in the setting of DLBCL. In this review, we highlight the newly reported heterogeneous mutational landscapes of DLBCL (from two whole-exome sequencing studies, and from a more recent work targeting a 293-gene of a hematologic malignancy-designed panel. Altogether, these studies provide further evidence of the clinical applicability of genomic tests. We also briefly review established biomarkers in DLBCL (e.g., MYC and TP53), and our understanding of the germinal center cell reaction, including its epigenetic regulation, emphasizing some of the key epigenetic modifiers that play a role in lymphomagenesis, with available therapeutic targets. In addition, we present current data regarding the role of immune landscapes in DLBCL (inflamed versus non-inflamed), how the recently defined molecular DLBCL subtypes may affect the cellular composition of the tumor microenvironment and the function of the immune cells, and how this new knowledge may result in promising therapeutic approaches in the near future.
Subject(s)
Biomarkers, Tumor/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Mutation , Tumor Microenvironment/immunology , Animals , Clinical Decision-Making , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Genomics , Humans , Immunotherapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , Molecular Targeted Therapy , Precision Medicine , PrognosisABSTRACT
The tools of next-generation sequencing (NGS) technology, such as targeted sequencing of candidate cancer genes and whole-exome and -genome sequencing, coupled with encouraging clinical results based on the use of targeted therapeutics and biomarker-guided clinical trials, are fueling further technological advancements of NGS technology. However, NGS data interpretation is associated with challenges that must be overcome to promote the techniques' effective integration into clinical oncology practice. Specifically, sequencing of a patient's tumor often yields 30-65 somatic variants, but most of these variants are "passenger" mutations that are phenotypically neutral and thus not targetable. Therefore, NGS data must be interpreted by multidisciplinary decision-support teams to determine mutation actionability and identify potential "drivers," so that the treating physician can prioritize what clinical decisions can be pursued in order to provide cancer therapy that is personalized to the patient and his or her unique genome.
Subject(s)
Medical Oncology , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine , Sequence Analysis, DNA/methods , Clinical Decision-Making , Drug Resistance/genetics , Germ-Line Mutation , Humans , Interdisciplinary Communication , Molecular Targeted Therapy , Patient Care Team , Whole Genome SequencingABSTRACT
BACKGROUND: Rapid advances in science challenge the timely adoption of evidence-based care in community settings. To bridge the gap between what is possible and what is practiced, we researched approaches to developing an artificial intelligence (AI) application that can provide real-time patient-specific decision support. MATERIALS AND METHODS: The Oncology Expert Advisor (OEA) was designed to simulate peer-to-peer consultation with three core functions: patient history summarization, treatment options recommendation, and management advisory. Machine-learning algorithms were trained to construct a dynamic summary of patients cancer history and to suggest approved therapy or investigative trial options. All patient data used were retrospectively accrued. Ground truth was established for approximately 1,000 unique patients. The full Medline database of more than 23 million published abstracts was used as the literature corpus. RESULTS: OEA's accuracies of searching disparate sources within electronic medical records to extract complex clinical concepts from unstructured text documents varied, with F1 scores of 90%-96% for non-time-dependent concepts (e.g., diagnosis) and F1 scores of 63%-65% for time-dependent concepts (e.g., therapy history timeline). Based on constructed patient profiles, OEA suggests approved therapy options linked to supporting evidence (99.9% recall; 88% precision), and screens for eligible clinical trials on ClinicalTrials.gov (97.9% recall; 96.9% precision). CONCLUSION: Our results demonstrated technical feasibility of an AI-powered application to construct longitudinal patient profiles in context and to suggest evidence-based treatment and trial options. Our experience highlighted the necessity of collaboration across clinical and AI domains, and the requirement of clinical expertise throughout the process, from design to training to testing. IMPLICATIONS FOR PRACTICE: Artificial intelligence (AI)-powered digital advisors such as the Oncology Expert Advisor have the potential to augment the capacity and update the knowledge base of practicing oncologists. By constructing dynamic patient profiles from disparate data sources and organizing and vetting vast literature for relevance to a specific patient, such AI applications could empower oncologists to consider all therapy options based on the latest scientific evidence for their patients, and help them spend less time on information "hunting and gathering" and more time with the patients. However, realization of this will require not only AI technology maturation but also active participation and leadership by clincial experts.
Subject(s)
Artificial Intelligence , Decision Support Systems, Clinical , Evidence-Based Medicine/methods , Medical Oncology/methods , Neoplasms/diagnosis , Clinical Decision-Making/methods , Clinical Trials as Topic , Electronic Health Records/statistics & numerical data , Evidence-Based Medicine/statistics & numerical data , Feasibility Studies , Humans , Medical Oncology/statistics & numerical data , Neoplasms/therapy , Patient SelectionABSTRACT
The cerebral vasculature provides the massive blood supply that the brain needs to grow and survive. By acquiring distinctive cellular and molecular characteristics it becomes the blood-brain barrier (BBB), a selectively permeable and protective interface between the brain and the peripheral circulation that maintains the extracellular milieu permissive for neuronal activity. Accordingly, there is great interest in uncovering the mechanisms that modulate the formation and differentiation of the brain vasculature. By performing a forward genetic screen in zebrafish we isolated no food for thought (nft (y72)), a recessive late-lethal mutant that lacks most of the intracerebral central arteries (CtAs), but not other brain blood vessels. We found that the cerebral vascularization deficit of nft (y72) mutants is caused by an inactivating lesion in reversion-inducing cysteine-rich protein with Kazal motifs [reck; also known as suppressor of tumorigenicity 15 protein (ST15)], which encodes a membrane-anchored tumor suppressor glycoprotein. Our findings highlight Reck as a novel and pivotal modulator of the canonical Wnt signaling pathway that acts in endothelial cells to enable intracerebral vascularization and proper expression of molecular markers associated with BBB formation. Additional studies with cultured endothelial cells suggest that, in other contexts, Reck impacts vascular biology via the vascular endothelial growth factor (VEGF) cascade. Together, our findings have broad implications for both vascular and cancer biology.
Subject(s)
Blood-Brain Barrier/cytology , Brain/embryology , Cerebrovascular Circulation/genetics , GPI-Linked Proteins/genetics , Neovascularization, Physiologic/genetics , Wnt Signaling Pathway/genetics , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Brain/blood supply , Cell Line , Cerebrovascular Circulation/physiology , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells , Humans , Mutation/genetics , Vascular Endothelial Growth Factor A/metabolism , Zebrafish/embryology , Zebrafish Proteins/metabolismABSTRACT
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is a high-risk subtype of ALL in children. There are conflicting data on the incidence and prognosis of Ph-like ALL in adults. Patients with newly diagnosed B-cell ALL (B-ALL) who received frontline chemotherapy at MD Anderson Cancer Center underwent gene expression profiling of leukemic cells. Of 148 patients, 33.1% had Ph-like, 31.1% had Ph+, and 35.8% had other B-ALL subtypes (B-other). Within the Ph-like ALL cohort, 61% had cytokine receptor-like factor 2 (CRLF2) overexpression. Patients with Ph-like ALL had significantly worse overall survival (OS), and event-free survival compared with B-other with a 5-year survival of 23% (vs 59% for B-other, P = .006). Sixty-eight percent of patients with Ph-like ALL were of Hispanic ethnicity. The following were associated with inferior OS on multivariable analysis: age (hazard ratio [HR], 3.299; P < .001), white blood cell count (HR, 1.910; P = .017), platelet count (HR, 7.437; P = .005), and Ph-like ALL (HR, 1.818; P = .03). Next-generation sequencing of the CRLF2+ group identified mutations in the JAK-STAT and Ras pathway in 85% of patients, and 20% had a CRLF2 mutation. Within the CRLF2+ group, JAK2 mutation was associated with inferior outcomes. Our findings show high frequency of Ph-like ALL in adults, an increased frequency of Ph-like ALL in adults of Hispanic ethnicity, significantly inferior outcomes of adult patients with Ph-like ALL, and significantly worse outcomes in the CRLF2+ subset of Ph-like ALL. Novel strategies are needed to improve the outcome of these patients.
Subject(s)
Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Cohort Studies , Disease-Free Survival , Female , Gene Expression Regulation, Leukemic , Hispanic or Latino/genetics , Humans , Janus Kinase 2/genetics , Male , Middle Aged , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proportional Hazards Models , Receptors, Cytokine/genetics , Risk Factors , Transcriptome , Treatment Outcome , Young AdultABSTRACT
BACKGROUND: Genomic testing is increasingly performed in oncology, but concerns remain regarding the clinician's ability to interpret results. In the current study, the authors sought to determine the agreement between physicians and genomic annotators from the Precision Oncology Decision Support (PODS) team at The University of Texas MD Anderson Cancer Center in Houston regarding actionability and the clinical use of test results. METHODS: On a prospective protocol, patients underwent clinical genomic testing for hotspot mutations in 46 or 50 genes. Six months after sequencing, physicians received questionnaires for patients who demonstrated a variant in an actionable gene, investigating their perceptions regarding the actionability of alterations and clinical use of these findings. Genomic annotators independently classified these variants as actionable, potentially actionable, unknown, or not actionable. RESULTS: Physicians completed 250 of 288 questionnaires (87% response rate). Physicians considered 168 of 250 patients (67%) as having an actionable alteration; of these, 165 patients (98%) were considered to have an actionable alteration by the PODS team and 3 were of unknown significance. Physicians were aware of genotype-matched therapy available for 119 patients (71%) and 48 of these 119 patients (40%) received matched therapy. Approximately 46% of patients in whom physicians regarded alterations as not actionable (36 of 79 patients) were classified as having an actionable/potentially actionable mutation by the PODS team. However, many of these were only theoretically actionable due to limited trials and/or therapies (eg, KRAS). CONCLUSIONS: Physicians are aware of recurrent mutations in actionable genes on "hotspot" panels. As larger genomic panels are used, there may be a growing need for annotation of actionability. Decision support to increase awareness of genomically relevant trials and novel treatment options for recurrent mutations (eg, KRAS) also are needed. Cancer 2018;124:966-72. Ā© 2017 American Cancer Society.
Subject(s)
Genetic Predisposition to Disease/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasms/genetics , Physicians , Genetics, Medical/methods , Humans , Medical Oncology/methods , Neoplasms/diagnosis , Neoplasms/therapy , Precision Medicine/methods , Prospective Studies , Surveys and QuestionnairesABSTRACT
BACKGROUND: Next-generation sequencing of cell-free DNA (cfDNA) has been shown to be a useful noninvasive test for detecting mutations in solid tumors. METHODS: Targeted gene sequencing was performed with a panel of 263 cancer-related genes for cfDNA and genomic DNA of peripheral blood mononuclear cells (PBMCs) obtained from presurgical specimens of 6 lung cancer patients, and mutation calls in these samples were compared with those of primary tumors and corresponding patient-derived xenografts (PDXs). RESULTS: Approximately 67% of the mutations detected in the tumor samples (primary tumors and/or PDXs) were also detected in genomic DNA from PBMCs as background mutations. These background mutations consisted of germline polymorphisms and a group of mutations with low allele frequencies, mostly <10%. These variants with a low allele frequency were repeatedly detected in all types of samples from the same patients and at similarly low allele frequency levels in PBMCs from different patients; this indicated that their detection might be derived from common causes, such as homologous sequences in the human genome. Allele frequencies of mutations detected in both primary tumors and cfDNA showed 2 patterns: 1) low allele frequencies (approximately 1%-10%) in cfDNA but high allele frequencies (usually >10% or >3-fold increase) in primary tumors and further enrichment in PDXs and 2) similar allele frequencies across samples. CONCLUSIONS: Because only a small fraction of total cfDNA might be derived from tumor cells, only mutations with the first allele frequency pattern may be regarded as tumor-specific mutations in cfDNA. Effective filtering of background mutations will be required to improve the accuracy of mutation calls in cfDNA. Cancer 2018;124:1061-9. Ā© 2017 American Cancer Society.
Subject(s)
Circulating Tumor DNA/genetics , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/genetics , Mutation , Female , Gene Frequency , Genomics/methods , Humans , Lung Neoplasms/pathology , Male , Neoplasm StagingABSTRACT
OBJECTIVE: Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars(y58)) or isoleucyl tRNA synthetase (iars(y68)), lead to similar increased branching angiogenesis in developing zebrafish. APPROACH AND RESULTS: The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars(y58) and iars(y68) mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars(y58) mutants. CONCLUSIONS: Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.
Subject(s)
Isoleucine-tRNA Ligase/deficiency , Neovascularization, Physiologic , Threonine-tRNA Ligase/deficiency , Unfolded Protein Response , Zebrafish Proteins/deficiency , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Animals, Genetically Modified , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Gene Expression Regulation, Developmental , Genotype , Isoleucine-tRNA Ligase/genetics , Mutation , Phenotype , Regulatory Factor X Transcription Factors , Signal Transduction , Threonine-tRNA Ligase/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , X-Box Binding Protein 1 , Zebrafish , Zebrafish Proteins/geneticsABSTRACT
BACKGROUND: While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements. METHODS: We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan-Meier method. RESULTS: PTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R2 = 0.73 and R2 = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts). CONCLUSIONS: The approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer.
Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/therapy , Immunotherapy/methods , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Melanoma/genetics , Melanoma/therapy , Mutation , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Adenocarcinoma/immunology , Adenocarcinoma of Lung , Algorithms , Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cohort Studies , Exome , Female , Humans , Immunotherapy, Adoptive/methods , Ipilimumab , Lung Neoplasms/immunology , Male , Melanoma/immunology , Middle Aged , Skin Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Burden/genetics , Melanoma, Cutaneous MalignantABSTRACT
The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Subject(s)
Genetics, Medical/organization & administration , Genome, Human/genetics , Genomics/organization & administration , International Cooperation , Neoplasms/genetics , DNA Methylation , DNA Mutational Analysis/trends , Databases, Genetic , Genes, Neoplasm/genetics , Genetics, Medical/trends , Genomics/trends , Humans , Intellectual Property , Mutation , Neoplasms/classification , Neoplasms/pathology , Neoplasms/therapyABSTRACT
BACKGROUND: Further advances of targeted cancer therapy require comprehensive in-depth profiling of somatic mutations that are present in subpopulations of tumor cells in a clinical tumor sample. However, it is unclear to what extent such intratumor heterogeneity is present and whether it may affect clinical decision-making. To study this question, we established a deep targeted sequencing platform to identify potentially actionable DNA alterations in tumor samples. METHODS: We assayed 515 formalin-fixed paraffin-embedded (FFPE) tumor samples and matched germline DNA (475 patients) from 11 disease sites by capturing and sequencing all the exons in 201 cancer-related genes. Mutations, indels, and copy number data were reported. RESULTS: We obtained a 1000-fold mean sequencing depth and identified 4794 nonsynonymous mutations in the samples analyzed, of which 15.2% were present at <10% allele frequency. Most of these low level mutations occurred at known oncogenic hotspots and are likely functional. Identifying low level mutations improved identification of mutations in actionable genes in 118 (24.84%) patients, among which 47 (9.8%) otherwise would have been unactionable. In addition, acquiring ultrahigh depth also ensured a low false discovery rate (<2.2%) from FFPE samples. CONCLUSIONS: Our results were as accurate as a commercially available CLIA-compliant hotspot panel but allowed the detection of a higher number of mutations in actionable genes. Our study reveals the critical importance of acquiring and utilizing high sequencing depth in profiling clinical tumor samples and presents a very useful platform for implementing routine sequencing in a cancer care institution.
Subject(s)
DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Neoplasms/genetics , Humans , Mutation , Sensitivity and SpecificityABSTRACT
Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase CĆĀ³1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.
Subject(s)
Diacylglycerol Cholinephosphotransferase/metabolism , Phosphatidylinositols/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Base Sequence , Blood Vessels/embryology , Blood Vessels/metabolism , DNA, Complementary/genetics , Diacylglycerol Cholinephosphotransferase/genetics , Humans , Mutation , Neovascularization, Physiologic/genetics , RNA, Small Interfering/genetics , Signal Transduction , Zebrafish/genetics , Zebrafish Proteins/geneticsABSTRACT
PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.
Subject(s)
Ataxia Telangiectasia Mutated Proteins , Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Biomarkers, Tumor/genetics , Cell Line, Tumor , Loss of Function Mutation , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Xenograft Model Antitumor AssaysABSTRACT
PURPOSE: Chondrosarcomas are the most common primary bone tumor in adults. Isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations are prevalent. We aimed to assess the clinico-genomic properties of IDH mutant versus IDH wild-type (WT) chondrosarcomas as well as alterations in other genes. EXPERIMENTAL DESIGN: We included 93 patients with conventional and dedifferentiated chondrosarcoma for which there were available clinical next-generation sequencing data. Clinical and genomic data were extracted and compared between IDH mutant and IDH WT chondrosarcomas and between TP53 mutant and TP53 WT chondrosarcomas. RESULTS: IDH1 and IDH2 mutations are prevalent in chondrosarcoma (50.5%), more common in chondrosarcomas arising in the extremities, associated with higher age at diagnosis, and more common in dedifferentiated chondrosarcomas compared with grades 1-3 conventional chondrosarcoma. There was no difference in survival based on IDH mutation in univariate and multivariate analyses. TP53 mutation was the next most prevalent (41.9%) and is associated with worse overall survival and metastasis-free survival in both univariate and multivariate analyses. TP53 mutation was also associated with higher risk of recurrence following curative-intent surgery and worse survival among patients that presented with de novo metastatic disease. CONCLUSIONS: IDH mutations are prevalent in chondrosarcoma though were not associated with survival outcomes in this cohort. TP53 mutations were the next most common alteration and were associated with worse outcomes.
Subject(s)
Bone Neoplasms , Chondrosarcoma , Adult , Humans , Mutation , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone and Bones/pathology , Genomics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Tumor Suppressor Protein p53/geneticsABSTRACT
Genomically-informed therapy requires consideration of the functional impact of genomic alterations on protein expression and/or function. However, a substantial number of variants are of unknown significance (VUS). The MD Anderson Precision Oncology Decision Support (PODS) team developed an actionability classification scheme that categorizes VUS as either "Unknown" or "Potentially" actionable based on their location within functional domains and/or proximity to known oncogenic variants. We then compared PODS VUS actionability classification with results from a functional genomics platform consisting of mutant generation and cell viability assays. 106 (24%) of 438 VUS in 20 actionable genes were classified as oncogenic in functional assays. Variants categorized by PODS as Potentially actionable (N = 204) were more likely to be oncogenic than those categorized as Unknown (N = 230) (37% vs 13%, p = 4.08e-09). Our results demonstrate that rule-based actionability classification of VUS can identify patients more likely to have actionable variants for consideration with genomically-matched therapy.
ABSTRACT
Deficiency of MTAP (MTAPdef) mainly occurs because of homozygous loss of chromosome 9p21, which is the most common copy-number loss in metastatic urothelial cancer (mUC). We characterized the clinical and genomic features of MTAPdef mUC in 193 patients treated at MD Anderson Cancer Center (MDACC) and 298 patients from the phase 2 IMvigor210 trial, which investigated atezolizumab in cisplatin-ineligible and platinum-refractory disease. In the MDACC cohort, visceral metastases were significantly more common for MTAPdef (n = 48) than for MTAP-proficient (MTAPprof; n = 145) patients (75% vs 55.2%; p = 0.02). MTAPdef was associated with poor prognosis (median overall survival [mOS] 12.3 vs 20.2 mo; p = 0.007) with an adjusted hazard ratio of 1.93 (95% confidence interval 1.35-2.98). Similarly, IMvigor210 patients with MTAPlo (n = 29) had a higher incidence of visceral metastases than those with MTAPhi tumors (n = 269; 86.2% vs 72.5%; p = 0.021) and worse prognosis (mOS 8.0 vs 11.3 mo; p = 0.042). Hyperplasia-associated genes were more frequently mutated in MTAPdef tumors (FGFR3: 31% vs 8%; PI3KCA: 31% vs 19%), while alterations in dysplasia-associated genes were less common in MTAPdef tumors (TP53: 41% vs 67%; RB1: 0% vs 16%). Our findings support a distinct biology in MTAPdef mUC that is associated with early visceral disease and worse prognosis. PATIENT SUMMARY: We investigated the outcomes for patients with the most common gene loss (MTAP gene) in metastatic cancer of the urinary tract. We found that this loss correlates with worse prognosis and a higher risk of metastasis in internal organs. There seems to be distinct tumor biology for urinary tract cancer with MTAP gene loss and this could be a potential target for treatment.