Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nat Biotechnol ; 24(4): 461-5, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16550175

ABSTRACT

Green fluorescent protein (GFP) and GFP-like proteins represent invaluable genetically encoded fluorescent probes. In the last few years a new class of photoactivatable fluorescent proteins (PAFPs) capable of pronounced light-induced spectral changes have been developed. Except for tetrameric KFP1 (ref. 4), all known PAFPs, including PA-GFP, Kaede, EosFP, PS-CFP, Dronpa, PA-mRFP1 and KikGR require light in the UV-violet spectral region for activation through one-photon excitation--such light can be phototoxic to some biological systems. Here, we report a monomeric PAFP, Dendra, derived from octocoral Dendronephthya sp. and capable of 1,000- to 4,500-fold photoconversion from green to red fluorescent states in response to either visible blue or UV-violet light. Dendra represents the first PAFP, which is simultaneously monomeric, efficiently matures at 37 degrees C, demonstrates high photostability of the activated state, and can be photoactivated by a common, marginally phototoxic, 488-nm laser line. We demonstrate the suitability of Dendra for protein labeling and tracking to quantitatively study dynamics of fibrillarin and vimentin in mammalian cells.


Subject(s)
Fluorescent Dyes , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Microscopy, Fluorescence, Multiphoton/methods , Photochemistry/methods , Protein Engineering/methods , Light , Luminescent Proteins/chemistry , Luminescent Proteins/radiation effects
2.
Biotechniques ; 61(2): 92-4, 2016.
Article in English | MEDLINE | ID: mdl-27528074

ABSTRACT

Genetically encoded photosensitizers represent a promising optogenetic tool for the induction of light-controlled oxidative stress strictly localized to a selected intracellular compartment. Here we tested the phototoxic effects of the flavin-containing phototoxic protein miniSOG targeted to the cytoplasmic surfaces of late endosomes and lysosomes by fusion with Rab7. In HeLa Kyoto cells stably expressing miniSOG-Rab7, we demonstrated a high level of cell death upon blue-light illumination. Pepstatin A completely abolished phototoxicity of miniSOG-Rab7, showing a key role for cathepsin D in this model. Using a far-red fluorescence sensor for caspase-3, we observed caspase-3 activation during miniSOG-Rab7-mediated cell death. We conclude that upon illumination, miniSOG-Rab7 induces lysosomal membrane permeabilization (LMP) and leakage of cathepsins into the cytosol, resulting in caspase-dependent apoptosis.


Subject(s)
Cell Death , Lysosomes , Microscopy, Fluorescence/methods , Optogenetics/methods , Photosensitizing Agents/metabolism , Singlet Oxygen/pharmacology , Caspase 3/analysis , Caspase 3/metabolism , Cell Death/drug effects , Cell Death/radiation effects , HeLa Cells , Humans , Light , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lysosomes/genetics , Lysosomes/metabolism , Photosensitizing Agents/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Singlet Oxygen/metabolism , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
3.
J Biol Chem ; 279(42): 43367-70, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15297465

ABSTRACT

The nature of coloration in many marine animals remains poorly investigated. Here we studied the blue pigment of a scyfoid jellyfish Rhizostoma pulmo and determined it to be a soluble extracellular 30-kDa chromoprotein with a complex absorption spectrum peaking at 420, 588, and 624 nm. Furthermore, we cloned the corresponding cDNA and confirmed its identity by immunoblotting and mass spectrometry experiments. The chromoprotein, named rpulFKz1, consists of two domains, a Frizzled cysteine-rich domain and a Kringle domain, inserted into one another. Generally, Frizzleds are members of a basic Wnt signal transduction pathway investigated intensely with regard to development and cancerogenesis. Kringles are autonomous structural domains found throughout the blood clotting and fibrinolytic proteins. Neither Frizzled and Kringle domains association with any type of coloration nor Kringle intrusion into Frizzled sequence was ever observed. Thus, rpulFKz1 represents a new class of animal pigments, whose chromogenic group remains undetermined. The striking homology between a chromoprotein and members of the signal transduction pathway provides a novel node in the evolution track of growth factor-mediated morphogenesis compounds.


Subject(s)
Kringles/physiology , Luminescent Proteins/chemistry , Scyphozoa/chemistry , Amino Acid Sequence , Animals , Models, Molecular , Molecular Sequence Data , Pigments, Biological/isolation & purification , Sequence Alignment , Sequence Homology, Amino Acid , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL