Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Chem ; 66(4): 525-536, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32176780

ABSTRACT

BACKGROUND: Monogenic autoinflammatory diseases are caused by pathogenic variants in genes that regulate innate immune responses, and are characterized by sterile systemic inflammatory episodes. Since symptoms can overlap within this rapidly expanding disease category, accurate genetic diagnosis is of the utmost importance to initiate early inflammation-targeted treatment and prevent clinically significant or life-threatening complications. Initial recommendations for the genetic diagnosis of autoinflammatory diseases were limited to a gene-by-gene diagnosis strategy based on the Sanger method, and restricted to the 4 prototypic recurrent fevers (MEFV, MVK, TNFRSF1A, and NLRP3 genes). The development of best practices guidelines integrating critical recent discoveries has become essential. METHODS: The preparatory steps included 2 online surveys and pathogenicity annotation of newly recommended genes. The current guidelines were drafted by European Molecular Genetics Quality Network members, then discussed by a panel of experts of the International Society for Systemic Autoinflammatory Diseases during a consensus meeting. RESULTS: In these guidelines, we combine the diagnostic strength of next-generation sequencing and recommendations to 4 more recently identified genes (ADA2, NOD2, PSTPIP1, and TNFAIP3), nonclassical pathogenic genetic alterations, and atypical phenotypes. We present a referral-based decision tree for test scope and method (Sanger versus next-generation sequencing) and recommend on complementary explorations for mosaicism, copy-number variants, and gene dose. A genotype table based on the 5-category variant pathogenicity classification provides the clinical significance of prototypic genotypes per gene and disease. CONCLUSIONS: These guidelines will orient and assist geneticists and health practitioners in providing up-to-date and appropriate diagnosis to their patients.


Subject(s)
Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , High-Throughput Nucleotide Sequencing , Adaptor Proteins, Signal Transducing/genetics , Adenosine Deaminase/genetics , Cytoskeletal Proteins/genetics , Genetic Testing , Humans , Intercellular Signaling Peptides and Proteins/genetics , Nod2 Signaling Adaptor Protein/genetics , Practice Guidelines as Topic , Prenatal Diagnosis , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
2.
Eur J Hum Genet ; 32(5): 479-488, 2024 May.
Article in English | MEDLINE | ID: mdl-38443545

ABSTRACT

Hereditary Breast and Ovarian Cancer (HBOC) is a genetic condition associated with increased risk of cancers. The past decade has brought about significant changes to hereditary breast and ovarian cancer (HBOC) diagnostic testing with new treatments, testing methods and strategies, and evolving information on genetic associations. These best practice guidelines have been produced to assist clinical laboratories in effectively addressing the complexities of HBOC testing, while taking into account advancements since the last guidelines were published in 2007. These guidelines summarise cancer risk data from recent studies for the most commonly tested high and moderate risk HBOC genes for laboratories to refer to as a guide. Furthermore, recommendations are provided for somatic and germline testing services with regards to clinical referral, laboratory analyses, variant interpretation, and reporting. The guidelines present recommendations where 'must' is assigned to advocate that the recommendation is essential; and 'should' is assigned to advocate that the recommendation is highly advised but may not be universally applicable. Recommendations are presented in the form of shaded italicised statements throughout the document, and in the form of a table in supplementary materials (Table S4). Finally, for the purposes of encouraging standardisation and aiding implementation of recommendations, example report wording covering the essential points to be included is provided for the most common HBOC referral and reporting scenarios. These guidelines are aimed primarily at genomic scientists working in diagnostic testing laboratories.


Subject(s)
Genetic Testing , Ovarian Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Genetic Predisposition to Disease , Genetic Testing/standards , Genetic Testing/methods , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Practice Guidelines as Topic
3.
Eur J Hum Genet ; 31(9): 1003-1009, 2023 09.
Article in English | MEDLINE | ID: mdl-37443332

ABSTRACT

Inherited cardiomyopathies and arrhythmias (ICAs) are a prevalent and clinically heterogeneous group of genetic disorders that are associated with increased risk of sudden cardiac death and heart failure. Making a genetic diagnosis can inform the management of patients and their at-risk relatives and, as such, molecular genetic testing is now considered an integral component of the clinical care pathway. However, ICAs are characterised by high genetic and allelic heterogeneity, incomplete / age-related penetrance, and variable expressivity. Therefore, despite our improved understanding of the genetic basis of these conditions, and significant technological advances over the past two decades, identifying and recognising the causative genotype remains challenging. As clinical genetic testing for ICAs becomes more widely available, it is increasingly important for clinical laboratories to consolidate existing knowledge and experience to inform and improve future practice. These recommendations have been compiled to help clinical laboratories navigate the challenges of ICAs and thereby facilitate best practice and consistency in genetic test provision for this group of disorders. General recommendations on internal and external quality control, referral, analysis, result interpretation, and reporting are described. Also included are appendices that provide specific information pertinent to genetic testing for hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies, long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia.


Subject(s)
Cardiomyopathies , Long QT Syndrome , Humans , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Genetic Testing , Death, Sudden, Cardiac/etiology , Long QT Syndrome/diagnosis
4.
Eur J Hum Genet ; 27(10): 1502-1508, 2019 10.
Article in English | MEDLINE | ID: mdl-31186541

ABSTRACT

Monogenic autoinflammatory disorders (AIDs) are rare diseases caused by variants in genes regulating the innate immune system. The identification of the first four genes responsible for the prototype group of hereditary recurrent fevers prompted the development of genetic diagnosis, followed by external quality assessment and guidelines for the interpretation of sequence variants in these diseases. Recent changes in the diagnosis of genetic diseases, namely the implementation of next-generation sequencing (NGS), lead to discovery of the new genes associated with at least 40 novel AIDs, which revolutionized patient care and prognosis. However, these rapid advances resulted in nonstandardized molecular strategies that can influence genetic diagnosis and reporting of results. In order to assess factors, which may have an impact on performance and quality of results in the NGS era, we carried out an online survey among member laboratories of the European Molecular Genetics Quality Network, which highlighted different strategies being used and identified pitfalls that deserve discussion and improvement.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Practice Patterns, Physicians' , Europe , Genetic Association Studies/methods , Genetic Testing/methods , Humans , Public Health Surveillance , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL