ABSTRACT
Long-range (>10 µm) transport of electrons along networks of Geobacter sulfurreducens protein filaments, known as microbial nanowires, has been invoked to explain a wide range of globally important redox phenomena. These nanowires were previously thought to be type IV pili composed of PilA protein. Here, we report a 3.7 Å resolution cryoelectron microscopy structure, which surprisingly reveals that, rather than PilA, G. sulfurreducens nanowires are assembled by micrometer-long polymerization of the hexaheme cytochrome OmcS, with hemes packed within â¼3.5-6 Å of each other. The inter-subunit interfaces show unique structural elements such as inter-subunit parallel-stacked hemes and axial coordination of heme by histidines from neighboring subunits. Wild-type OmcS filaments show 100-fold greater conductivity than other filaments from a ΔomcS strain, highlighting the importance of OmcS to conductivity in these nanowires. This structure explains the remarkable capacity of soil bacteria to transport electrons to remote electron acceptors for respiration and energy sharing.
Subject(s)
Electron Transport/physiology , Geobacter/metabolism , Heme/metabolism , Biofilms , Electric Conductivity , Electrons , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/chemistry , Nanowires , Oxidation-ReductionABSTRACT
Hot-carrier transistors are a class of devices that leverage the excess kinetic energy of carriers. Unlike regular transistors, which rely on steady-state carrier transport, hot-carrier transistors modulate carriers to high-energy states, resulting in enhanced device speed and functionality. These characteristics are essential for applications that demand rapid switching and high-frequency operations, such as advanced telecommunications and cutting-edge computing technologies1-5. However, the traditional mechanisms of hot-carrier generation are either carrier injection6-11 or acceleration12,13, which limit device performance in terms of power consumption and negative differential resistance14-17. Mixed-dimensional devices, which combine bulk and low-dimensional materials, can offer different mechanisms for hot-carrier generation by leveraging the diverse potential barriers formed by energy-band combinations18-21. Here we report a hot-emitter transistor based on double mixed-dimensional graphene/germanium Schottky junctions that uses stimulated emission of heated carriers to achieve a subthreshold swing lower than 1 millivolt per decade beyond the Boltzmann limit and a negative differential resistance with a peak-to-valley current ratio greater than 100 at room temperature. Multi-valued logic with a high inverter gain and reconfigurable logic states are further demonstrated. This work reports a multifunctional hot-emitter transistor with significant potential for low-power and negative-differential-resistance applications, marking a promising advancement for the post-Moore era.
ABSTRACT
Accurate and efficient prediction of polymers properties is crucial for polymer design. Recently, data-driven artificial intelligence (AI) models have demonstrated great promise in polymers property analysis. Even with the great progresses, a pivotal challenge in all the AI-driven models remains to be the effective representation of molecules. Here we introduce Multi-Cover Persistence (MCP)-based molecular representation and featurization for the first time. Our MCP-based polymer descriptors are combined with machine learning models, in particular, Gradient Boosting Tree (GBT) models, for polymers property prediction. Different from all previous molecular representation, polymer molecular structure and interactions are represented as MCP, which utilizes Delaunay slices at different dimensions and Rhomboid tiling to characterize the complicated geometric and topological information within the data. Statistic features from the generated persistent barcodes are used as polymer descriptors, and further combined with GBT model. Our model has been extensively validated on polymer benchmark datasets. It has been found that our models can outperform traditional fingerprint-based models and has similar accuracy with geometric deep learning models. In particular, our model tends to be more effective on large-sized monomer structures, demonstrating the great potential of MCP in characterizing more complicated polymer data. This work underscores the potential of MCP in polymer informatics, presenting a novel perspective on molecular representation and its application in polymer science.
Subject(s)
Machine Learning , Polymers , Polymers/chemistry , AlgorithmsABSTRACT
MOTIVATION: Recent advances in spatial transcriptomics technologies have enabled gene expression profiles while preserving spatial context. Accurately identifying spatial domains is crucial for downstream analysis and it requires the effective integration of gene expression profiles and spatial information. While increasingly computational methods have been developed for spatial domain detection, most of them cannot adaptively learn the complex relationship between gene expression and spatial information, leading to sub-optimal performance. RESULTS: To overcome these challenges, we propose a novel deep learning method named Spatial-MGCN for identifying spatial domains, which is a Multi-view Graph Convolutional Network (GCN) with attention mechanism. We first construct two neighbor graphs using gene expression profiles and spatial information, respectively. Then, a multi-view GCN encoder is designed to extract unique embeddings from both the feature and spatial graphs, as well as their shared embeddings by combining both graphs. Finally, a zero-inflated negative binomial decoder is used to reconstruct the original expression matrix by capturing the global probability distribution of gene expression profiles. Moreover, Spatial-MGCN incorporates a spatial regularization constraint into the features learning to preserve spatial neighbor information in an end-to-end manner. The experimental results show that Spatial-MGCN outperforms state-of-the-art methods consistently in several tasks, including spatial clustering and trajectory inference.
Subject(s)
Eye Diseases, Hereditary , Genetic Diseases, X-Linked , Humans , Gene Expression ProfilingABSTRACT
Intervertebral disk degeneration (IDD) is a significant cause of low back pain, characterized by excessive senescence and apoptosis of nucleus pulposus cells (NPCs). However, the precise mechanisms behind this senescence and apoptosis remain unclear. This study aimed to investigate the role of T-box transcription factor T (Tbxt) in IDD both in vitro and in vivo, using a hydrogen peroxide (H2O2)-induced NPCs senescence and apoptosis model, as well as a rat acupuncture IDD model. First, the expression of p16 and cleaved-caspase 3 significantly increased in degenerated human NPCs, accompanied by a decrease in Tbxt expression. Knockdown of Tbxt exacerbated senescence and apoptosis in the H2O2-induced NPCs degeneration model. Conversely, upregulation of Tbxt alleviated these effects induced by H2O2. Mechanistically, bioinformatic analysis revealed that the direct downstream target genes of Tbxt were highly enriched in autophagy-related pathways, and overexpression of Tbxt significantly activated autophagy in NPCs. Moreover, the administration of the autophagy inhibitor, 3-methyladenine, impeded the impact of Tbxt on the processes of senescence and apoptosis in NPCs. Further investigation revealed that Tbxt enhances autophagy by facilitating the transcription of ATG7 through its interaction with a specific motif within the promoter region. In conclusion, this study suggests that Tbxt mitigates H2O2-induced senescence and apoptosis of NPCs by activating ATG7-mediated autophagy.NEW & NOTEWORTHY This study investigates the role of Tbxt in IDD. The results demonstrate that knockdown of Tbxt exacerbates H2O2-induced senescence and apoptosis in NPCs and IDD, whereas upregulation of Tbxt significantly protects against IDD both in vivo and in vitro. Mechanistically, in the nucleus, Tbxt enhances the transcription of ATG7, leading to increased expression of ATG7 protein levels. This, in turn, promotes elevated autophagy levels, ultimately alleviating IDD.
Subject(s)
Apoptosis , Autophagy-Related Protein 7 , Autophagy , Cellular Senescence , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats, Sprague-Dawley , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Autophagy/drug effects , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein 7/genetics , Animals , Cellular Senescence/drug effects , Humans , Rats , Male , Female , Adult , Middle Aged , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Cells, CulturedABSTRACT
Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.
Subject(s)
Aggrecans , Extracellular Matrix , Fetal Proteins , Gene Expression Regulation , Nucleus Pulposus , Smad3 Protein , Adult , Animals , Female , Humans , Male , Middle Aged , Rats , Aggrecans/metabolism , Aggrecans/genetics , Cells, Cultured , Collagen Type II/metabolism , Collagen Type II/genetics , Extracellular Matrix/metabolism , Fetal Proteins/genetics , Fetal Proteins/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Rats, Sprague-Dawley , Smad3 Protein/metabolism , Smad3 Protein/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolismABSTRACT
BACKGROUND: The axillary lymph-node metastatic burden is closely associated with treatment decisions and prognosis in breast cancer patients. This study aimed to explore the value of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT)-based radiomics in combination with ultrasound and clinical pathological features for predicting axillary lymph-node metastatic burden in breast cancer. METHODS: A retrospective analysis was conducted and involved 124 patients with pathologically confirmed early-stage breast cancer who had undergone 18F-FDG PET/CT examination. The ultrasound, PET/CT, and clinical pathological features of all patients were analysed, and radiomic features from PET images were extracted to establish a multi-parameter predictive model. RESULTS: The ultrasound lymph-node positivity rate and PET lymph-node positivity rate in the high nodal burden group were significantly higher than those in the low nodal burden group (χ2 = 19.867, p < 0.001; χ2 = 33.025, p < 0.001). There was a statistically significant difference in the PET-based radiomics score (RS) for predicting axillary lymph-node burden between the high and low lymph-node burden groups. (-1.04 ± 0.41 vs. -1.47 ± 0.41, t = -4.775, p < 0.001). The ultrasound lymph-node positivity (US_LNM) (odds ratio [OR] = 3.264, 95% confidence interval [CI] = 1.022-10.423), PET lymph-node positivity (PET_LNM) (OR = 14.242, 95% CI = 2.960-68.524), and RS (OR = 5.244, 95% CI = 3.16-20.896) are all independent factors associated with high lymph-node burden (p < 0.05). The area under the curve (AUC) of the multi-parameter (MultiP) model was 0.895, which was superior to those of US_LNM, PET_LNM, and RS models (AUC = 0.703, 0.814, 0.773, respectively), with statistically significant differences (Z = 2.888, 3.208, 3.804, respectively; p = 0.004, 0.002, < 0.001, respectively). Decision curve analysis indicated that the MultiP model provided a higher net benefit for all patients. CONCLUSION: A MultiP model based on PET-based radiomics was able to effectively predict axillary lymph-node metastatic burden in breast cancer. TRIAL REGISTRATION: This study was registered with ClinicalTrials.gov (registration number: NCT05826197) on May 7, 2023.
Subject(s)
Axilla , Breast Neoplasms , Fluorodeoxyglucose F18 , Lymph Nodes , Lymphatic Metastasis , Positron Emission Tomography Computed Tomography , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Middle Aged , Lymphatic Metastasis/diagnostic imaging , Retrospective Studies , Adult , Aged , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Radiopharmaceuticals , Prognosis , Neoplasm Staging , RadiomicsABSTRACT
Ubiquitination is the most common post-translational modification and is essential for various cellular regulatory processes. RNF187, which is known as RING domain AP1 coactivator-1, is a member of the RING finger family. RNF187 can promote the proliferation and migration of various tumor cells. However, whether it has a similar role in regulating spermatogonia is not clear. This study explored the role and molecular mechanism of RNF187 in a mouse spermatogonia cell line (GC-1). We found that RNF187 knockdown reduced the proliferation and migration of GC-1 cells and promoted their apoptosis. RNF187 overexpression significantly increased the proliferation and migration of GC-1 cells. In addition, we identified Keratin36/Keratin84 (KRT36/KRT84) as interactors with RNF187 by co-immunoprecipitation and mass spectrometry analyses. RNF187 promoted GC-1 cell growth by degrading KRT36/KRT84 via lysine 48-linked polyubiquitination. Subsequently, we found that KRT36 or KRT84 overexpression significantly attenuated proliferation and migration of RNF187-overexpressing GC-1 cells. In summary, our study explored the involvement of RNF187 in regulating the growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. This may provide a promising new strategy for treating infertility caused by abnormal spermatogonia development.
Subject(s)
Lysine , Spermatogonia , Ubiquitin-Protein Ligases , Animals , Male , Mice , Ubiquitin-Protein Ligases/genetics , UbiquitinationABSTRACT
Nucleus pulposus (NP) degeneration is characterized by the decreased cellularity of nucleus pulposus cells (NPCs) and diminished content of hydrophilic extracellular matrix (ECM). Overexpression of brachyury has been reported to reverse the degenerated NPCs into healthy phenotypes. However, the direct correlation between brachyury and ECM has not been fully elucidated. This study revealed that brachyury expression decreased in human degenerated NP tissues and Lipopolysaccharide (LPS)-induced degenerated rat NPCs model. In vitro and in vivo experiments further showed that brachyury deficiency suppressed the synthesis of aggrecan and collagen II in NP. Mechanistically, ChIP-qPCR assays demonstrated that brachyury bound to the promoter region of aggrecan in NPCs. Furthermore, luciferase reporter assays revealed that brachyury transcriptionally activated aggrecan expression through binding with a novel specific motif. In rat in vivo model, brachyury overexpression partially reversed the degenerative phenotype. In conclusion, brachyury positively regulated ECM synthesis via directly promoting aggrecan transcription in NPCs. Accordingly, it may be helpful to be developed into a promising therapeutic target for NP degeneration.
Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Humans , Rats , Aggrecans/genetics , Aggrecans/metabolism , Extracellular Matrix/metabolism , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolismABSTRACT
The environmental friendliness, economic feasibility, and high efficiency of carbon quantum dots (CQDs) render them as highly promising candidates for corrosion inhibitors. The present study proposed the fabrication of nitrogen- and sulfur-codoped CQDs via an one-step hydrothermal method using l-cysteine and 4-aminosalicylic acid as precursors. The structure, particle size, and surface ligands of the prepared CQDs were determined through spectroscopy and transmission electron microscopy characterization. Subsequently, the inhibition performance of the CQDs on carbon steel in a 0.5 M sulfuric acid solution was evaluated through weight loss measurement, electrochemical methods, and surface analysis. The CQDs exhibited remarkable inhibition efficiencies of 97.9% at 293 K and 98.9% at 313 K, with a concentration of 150 ppm. In addition, the obtained CQDs demonstrated a combined physisorption and chemisorption adsorption behavior, which complied with the Langmuir adsorption isotherm. These findings provide insight into the inhibition mechanism and highlight the potential of codoped CQDs for corrosion mitigation applications in acidic environments.
ABSTRACT
BACKGROUND: Antiviral drugs show significant efficacy in non-severe COVID-19 cases, yet there remains a subset of moderate COVID-19 patients whose pneumonia continues to progress post a complete course of treatment. Plasma-activated water (PAW) possesses anti-SARS-CoV-2 properties. To explore the potential of PAW in improving pneumonia in COVID-19 patients following antiviral treatment failure, we conducted this study. METHODS: This was a randomized, controlled trial. Moderate COVID-19 patients with antiviral treatment failure were randomly assigned to the experimental group or the control group. They inhaled nebulized PAW or saline respectively. This was done twice daily for four consecutive days. We assessed improvement in chest CT on day 5, the rate of symptom resolution within 10 days, and safety. RESULTS: A total of 23 participants were included, with 11 receiving PAW and 12 receiving saline. The baseline characteristics of both groups were comparable. The experimental group showed a higher improvement rate in chest CT on day 5 (81.8% vs. 33.3%, p = 0.036). The cumulative disappearance rate of cough within 10 days was higher in the experimental group. Within 28 days, 4 patients in each group progressed to severe illness, and no patients died. No adverse reactions were reported from inhaling nebulized PAW. CONCLUSION: This pilot trial preliminarily confirmed that nebulized inhalation of PAW can alleviate pneumonia in moderate COVID-19 patients with antiviral treatment failure, with no adverse reactions observed. This still needs to be verified by large-scale studies. TRIAL REGISTRATION: Chinese Clinical Trial Registry; No.: ChiCTR2300078706 (retrospectively registered, 12/15/2023); URL: www.chictr.org.cn .
Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Nebulizers and Vaporizers , SARS-CoV-2 , Treatment Failure , Humans , Male , Female , Middle Aged , Pilot Projects , Administration, Inhalation , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Aged , Water , Adult , Treatment OutcomeABSTRACT
Irrigation practices and groundwater levels are critical factors contributing to soil salinization in arid and semi-arid regions. However, the impact of soil salinization resulting from Yellow River water irrigation and recharge on microbial communities and their functions in the Huinong District has not been thoroughly documented. In this study, high-throughput sequencing technology was employed to analyze the diversity, composition, and structure of bacterial and fungal communities across a gradient of salinized soils. The results indicated that the alpha diversity of bacterial communities was significantly higher in slightly saline soils compared to highly saline soils. Soil salinization notably influenced the composition of both bacterial and fungal communities. Highly salinized soils were enriched with bacterial taxa such as Halomonas, Salinimicrobium, Pseudomonas, Solibacillus, and Kocuria, as well as fungal taxa including Emericellopsis, Alternaria, and Podospora. In these highly saline soils, bacterial taxa associated with iron respiration, sulfur respiration, and hydrocarbon degradation were more prevalent, whereas fungal taxa linked to functions such as soil animal pathogens, arbuscular mycorrhizal symbiosis, endophytes, dung saprotrophy, leaf saprotrophy, soil saprotrophy, fungal parasitism, and plant pathogenicity were less abundant. Random forest analysis identified nine bacterial and eighteen fungal taxa as potential biomarkers for salinity discrimination in saline soils. Symbiotic network analysis further revealed that soil salinization pressure reduced the overall complexity and stability of bacterial and fungal communities. Additionally, bacterial community assembly showed a tendency shift from stochastic to deterministic processes in response to increasing salinity, while fungal community assembly remained dominated by deterministic processes. provide robust evidence that soil salinity is a major inhibitor of soil biogeochemical processes in the Huinong District and plays a critical role in shaping bacterial and fungal communities, their symbiotic networks, and their assembly processes.
ABSTRACT
Nowadays, NOR-containing wastewater has placed huge pressure on global ecology. In this study, a chemically-modified chitosan-based polymer was cross-linked with magnetite to prepare a novel magnetic composite adsorbent named Fe3O4/CS-P(AM-SSS) for norfloxacin (NOR) removal. The preparation conditions were optimized by single factor experiments and response surface methodology. A series of characterization analyses were carried out on the morphology, structure, and properties of Fe3O4/CS-P(AM-SSS), verifying that Fe3O4/CS-P(AM-SSS) was successfully prepared. Batch adsorption experiments showed that NOR was efficiently removed by Fe3O4/CS-P(AM-SSS), with a broad pH applicability of 3-10, short adsorption equilibrium time of 60 min, maximum adsorption capacity of 268.79 mg/g, and high regeneration rate of 86% after eight adsorption-desorption cycles. Due to the three-dimensional network structure and abundant functional groups provided by modified chitosan polymer, the superior adsorption capability of Fe3O4/CS-P(AM-SSS) was achieved through electrostatic interaction, π-π stacking, hydrophobic interaction, and hydrogen bonding. Adsorption process was exothermic and well fitted by the pseudo-second-order kinetic model and the Langmuir isothermal model. The presence of cations had a slight inhibitory effect on NOR adsorption, while humic acid nearly had no effect. In model swine wastewater, 90.3% NOR was removed by Fe3O4/CS-P(AM-SSS). Therefore, with these superior characteristics, Fe3O4/CS-P(AM-SSS) was expected to be an ideal material for treating NOR-containing wastewater in the future.
Subject(s)
Chitosan , Ferrosoferric Oxide , Norfloxacin , Water Pollutants, Chemical , Norfloxacin/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Ferrosoferric Oxide/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/chemistry , Wastewater/chemistry , Polymers/chemistry , KineticsABSTRACT
Hepatectomy is still the major curative treatment for patients with liver malignancies. However, it is still a big challenge to remove the tumors in the central posterior area, especially if their location involves the retrohepatic inferior vena cava and hepatic veins. Ex vivo liver resection and auto-transplantation (ELRA), a hybrid technique of the traditional liver resection and transplantation, has brought new hope to these patients and therefore becomes a valid alternative to liver transplantation. Due to its technical difficulty, ELRA is still concentrated in a few hepatobiliary centers that have experienced surgeons in both liver resection and liver transplantation. The efficacy and safety of this technique has already been demonstrated in the treatment of benign liver diseases, especially in the advanced alveolar echinococcosis. Recently, the application of ELRA for liver malignances has gained more attention. However, standardization of clinical practice norms and international consensus are still lacking. The prognostic impact in these oncologic patients also needs further evaluation. In this review, we summarized the principles and recent progresses on ELRA.
Subject(s)
Liver Neoplasms , Liver Transplantation , Humans , Hepatectomy/adverse effects , Liver Neoplasms/surgery , Liver Transplantation/adverse effects , ConsensusABSTRACT
The lack of discernible vehicle contour features in low-light conditions poses a formidable challenge for nighttime vehicle detection under hardware cost constraints. Addressing this issue, an enhanced histogram of oriented gradients (HOGs) approach is introduced to extract relevant vehicle features. Initially, vehicle lights are extracted using a combination of background illumination removal and a saliency model. Subsequently, these lights are integrated with a template-based approach to delineate regions containing potential vehicles. In the next step, the fusion of superpixel and HOG (S-HOG) features within these regions is performed, and the support vector machine (SVM) is employed for classification. A non-maximum suppression (NMS) method is applied to eliminate overlapping areas, incorporating the fusion of vertical histograms of symmetrical features of oriented gradients (V-HOGs). Finally, the Kalman filter is utilized for tracking candidate vehicles over time. Experimental results demonstrate a significant improvement in the accuracy of vehicle recognition in nighttime scenarios with the proposed method.
ABSTRACT
BACKGROUND: Due to the scalability of deep learning technology, researchers have applied it to the non-destructive testing of peach internal quality. In addition, the soluble solids content (SSC) is an important internal quality indicator that determines the quality of peaches. Peaches with high SSC have a sweeter taste and better texture, making them popular in the market. Therefore, SSC is an important indicator for measuring peach internal quality and making harvesting decisions. RESULTS: This article presents the High Order Spatial Interaction Network (HOSINet), which combines the Position Attention Module (PAM) and Channel Attention Module (CAM). Additionally, a feature wavelength selection algorithm similar to the Group-based Clustering Subspace Representation (GCSR-C) is used to establish the Position and Channel Attention Module-High Order Spatial Interaction (PC-HOSI) model for peach SSC prediction. The accuracy of this model is compared with traditional machine learning and traditional deep learning models. Finally, the permutation algorithm is combined with deep learning models to visually evaluate the importance of feature wavelengths. Increasing the order of the PC-HOSI model enhances its ability to learn spatial correlations in the dataset, thus improving its predictive performance. CONCLUSION: The optimal model, PC-HOSI model, performed well with an order of 3 (PC-HOSI-3), with a root mean square error of 0.421 °Brix and a coefficient of determination of 0.864. Compared with traditional machine learning and deep learning algorithms, the coefficient of determination for the prediction set was improved by 0.07 and 0.39, respectively. The permutation algorithm also provided interpretability analysis for the predictions of the deep learning model, offering insights into the importance of spectral bands. These results contribute to the accurate prediction of SSC in peaches and support research on interpretability of neural network models for prediction. © 2024 Society of Chemical Industry.
Subject(s)
Prunus persica , Spectroscopy, Near-Infrared/methods , Least-Squares Analysis , Algorithms , Neural Networks, ComputerABSTRACT
Breast cancer is among the most common malignant cancers in women. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is a transcriptional repressor that has been shown to be involved in tumorigenesis, the cell cycle, and stem cell maintenance. In our study, increased expression of BMI-1 was found in both human triple negative breast cancer and luminal A-type breast cancer tissues compared with adjacent tissues. We also found that knockdown of BMI-1 significantly suppressed cell proliferation and migration in vitro and in vivo. Further mechanistic research demonstrated that BMI-1 directly bound to the promoter region of CDKN2D/BRCA1 and inhibited its transcription in MCF-7/MDA-MB-231. More importantly, we discovered that knockdown of CDKN2D/BRCA1 could promote cell proliferation and migration after repression by PTC-209. Our results reveal that BMI-1 transcriptionally suppressed BRCA1 in TNBC cell lines whereas, in luminal A cell lines, CDKN2D was the target gene. This provides a reference for the precise treatment of different types of breast cancer in clinical practice.
Subject(s)
Triple Negative Breast Neoplasms , Animals , Mice , Humans , Female , Body Mass Index , Triple Negative Breast Neoplasms/metabolism , Transcription Factors/genetics , Cell Line , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, NeoplasticABSTRACT
Anti-glomerular basement membrane (anti-GBM) disease is an organ-specific autoimmune disorder characterized by autoantibodies against GBM components. Evidence from human inherited kidney diseases and animal models suggests that the α, ß, and γ chains of laminin-521 are all essential for maintaining the glomerular filtration barrier. We previously demonstrated that laminin-521 is a novel autoantigen within the GBM and that autoantibodies to laminin-521 are present in about one-third of patients. In the present study, we investigated the pathogenicity of autoantibodies against laminin-521 with clinical and animal studies. Herein, a rare case of anti-GBM disease was reported with circulating autoantibodies binding to laminin-521 but not to the NC1 domains of α1-α5(IV) collagen. Immunoblot identified circulating IgG from this patient bound laminin α5 and γ1 chains. A decrease in antibody levels was associated with improved clinical presentation after plasmapheresis and immunosuppressive treatments. Furthermore, immunization with laminin-521 in female Wistar-Kyoto rats induced crescentic glomerulonephritis with linear IgG deposits along the GBM, complement activation along with infiltration of T cells and macrophages. Lung hemorrhage occurred in 75.0% of the rats and was identified by the presence of erythrocyte infiltrates and hemosiderin-laden macrophages in the lung tissue. Sera and kidney-eluted antibodies from rats immunized with laminin-521 demonstrated specific IgG binding to laminin-521 but not to human α3(IV)NC1, while the opposite was observed in human α3(IV)NC1-immunized rats. Thus, our patient data and animal studies imply a possible independent pathogenic role of autoantibodies against laminin-521 in the development of anti-GBM disease.
Subject(s)
Anti-Glomerular Basement Membrane Disease , Humans , Female , Animals , Rats , Rats, Inbred WKY , Autoantibodies , Laminin , Immunoglobulin GABSTRACT
MOTIVATION: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data. RESULTS: In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.
Subject(s)
Algorithms , Biomarkers , Computational Biology/methods , Disease Susceptibility , MicroRNAs/genetics , Neural Networks, Computer , Databases, Genetic , Humans , ROC Curve , Web BrowserABSTRACT
Small regulatory RNAs (sRNAs) regulate multiple physiological functions in bacteria, and sRNA PrrH can regulate iron homeostasis and virulence. However, the function of PrrH in Pseudomonas aeruginosa (P. aeruginosa) bloodstream infection (BSI) is largely unknown. The aim of this study was to investigate the role of PrrH in P. aeruginosa BSI model. First, P. aeruginosa PAO1 was co-cultured with peripheral blood cells for 6 h. qRT-PCR results showed a transient up-regulation of PrrH expression at 1 h. Simultaneously, the expression of iron uptake genes fpvA, pvdS and phuR were upregulated. In addition, the use of iron chelator 2,2'-dipyridyl to create low-iron conditions caused up-regulation of PrrH expression, a result similar to the BSI model. Furthermore, the addition of FeCl3 was found to decrease PrrH expression. These results support the hypothesis that the expression of PrrH is regulated by iron in BSI model. Then, to clarify the effect of PrrH on major cells in the blood, we used PrrH mutant, overexpressing and wild-type strains to act separately on erythrocytes and neutrophils. On one hand, the hemolysis assay revealed that PrrH contributes to the hemolytic activity of PAO1, and its effect was dependent on the T3SS system master regulator gene exsA, yet had no association with the hemolytic phospholipase C (plcH), pldA, and lasB elastase genes. On the other hand, PrrH mutant enhanced the oxidative resistance of PAO1 in the neutrophils co-culture assay, H2O2-treated growth curve and conventional plate spotting assays. Furthermore, the katA was predicted to be a target gene of PrrH by bioinformatics software, and then verified by qRT-PCR and GFP reporter system. In summary, dynamic changes in the expression of prrH are iron-regulated during PAO1 bloodstream infection. In addition, PrrH promotes the hemolytic activity of P. aeruginosa in an exsA-dependent manner and negatively regulates katA to reduce the oxidative tolerance of P. aeruginosa.