Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Immunol ; 266: 110331, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067675

ABSTRACT

Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137+Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137-Vγ2Vδ2 T-cells. In response to HMBPP, CD137+Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137-Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137+Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137+Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137+Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth.

2.
Immunol Rev ; 298(1): 254-263, 2020 11.
Article in English | MEDLINE | ID: mdl-33037700

ABSTRACT

Unique Vγ2Vδ2 (Vγ9Vδ2) T cells existing only in human and non-human primates, account for the majority of circulating γδ T cells in human adults. Vγ2Vδ2 T cells are the sole γδ T-cell subpopulation capable of recognizing the microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) produced by selected pathogens during infections. Recent seminal studies in non-human primate models have demonstrated that the unique HMBPP-specific Vγ2Vδ2 T cells are fast-acting, multi-functional, and protective during infections. This article reviews the recent seminal observations of Vγ2Vδ2 T cells in protective mechanisms against tuberculosis and other infections.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes
3.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817142

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Macrophages , Tuberculosis/drug therapy , Rifampin/pharmacology , Iron
4.
Plant Dis ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38035788

ABSTRACT

Hypericum chinensis is growing in popularity amongst consumers in cut-flower and pop-flower market as an ornamental woody plant for its florid berry and colorful flower. In August 2019, a new leaf spot disease was observed on H. chinensis in three commercial nurseries in Kunming (25°05'N, 102°72'E), Yunnian province, China. Disease symptoms were observed on approximately 40% of the plants one year after planting and 30% of the leaves were infected. Leaf symptoms began as small, water-soaked lesions on young leaves which later became larger, dark brown and necrotic. The lesion size ranged from 0.2 to 2.8 cm in diameter. For pathogen isolation, three samples of symptomatic leaves were collected from four different nurseries. The leaves were cut into 0.5 mm pieces, surface sterilized using 70% ethanol for 30 s, and 3% NaOCl for 5 min, rinsed three times in sterilized distilled water and plated on potato dextrose agar (PDA) (Zhou et al. 2023). The plates were incubated at 26°C in the dark for 3 days. Eight isolates with comparable morphological characteristics were obtained. Initially, colonies produced pale gray to white aerial mycelia, turning dark gray after 5 days. The isolates produced hyaline, single celled, straight and cylindrical conidia, with mean size 9.7 to 14.8 µm long × 3.7 to 5.6 µm wide (n = 100). Morphological characteristics were consistent with Colletotrichum sp. (Bailey and Jeger 1992). For molecular analysis, genomic DNA was extracted from three representative isolates (XSD1, XSD3 and XSD5), amplified using the primers ITS1/ITS4 (Yin et al. 2012) and T1/Bt2b (Glass and Donaldson 1995) and submitted to sequencing (Weir et al. 2012). DNA sequences of the isolates XSD2, XSD3 and XSD8 were identical. DNA sequences of a representative isolate XSD2 were deposited in GenBank (accession no. MW202334 for ITS, and OR347007 for TUB 2). MegaBLAST analysis of the ITS and TUB2 sequences showed 99.5% and 99.3% similarity with C. kahawae strain ICMP 18539 (accession no. NR_120138.1 for ITS) and strain IMI319418 (JX145227.1 for TUB 2). Pathogenicity tests were conducted by inoculating the pathogen on healthy mature leaves of H. chinensis in the field. Ten leaves (two leaves/plant) were inoculated by spraying conidial suspension (106 spores/ml) of isolates XSD1, XSD3 and XSD5, and covered with plastic bags to maintain high humidity for 48 hours, respectively. Leaves treated with sterile distilled water served as a control. All inoculated leaves showed symptoms similar to those observed in the field at 23±5°C 10 days after inoculation. No symptoms developed on non-inoculated leaves. The pathogen was re-isolated from inoculated diseased leaves and identified as C. kahawae based on morphological and molecular characters. C. kahawae has been reported to cause leaf spot on cultivated rocket in Italy (Garibaldi et al. 2016), and anthracnose disease on tree tomato in Colombia (Rojas et al. 2018), to our knowledge, this is the first report of C. kahawae causing anthracnose on H. chinensis worldwide. Due to important ornamental and economic value of H. chinensis, the distribution of C. kahawae needs to be investigated and monitored for effective disease management strategies to be developed.

5.
J Nanobiotechnology ; 20(1): 36, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35033108

ABSTRACT

Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a top killer among infectious diseases. While Bacillus Calmette-Guerin (BCG) is the sole TB vaccine, the clumped-clustered features of BCG in intradermal immunization appear to limit both the BCG protection efficacy and the BCG vaccination safety. We hypothesize that engineering of clumped-clustered BCG into nanoscale particles would improve safety and also facilitate the antigen-presenting-cell (APC)'s uptake and the following processing/presentation for better anti-TB protective immunity. Here, we engineered BCG protoplasts into nanoscale membraned BCG particles, termed as "BCG-Nanocage" to enhance the anti-TB vaccination efficiency and safety. BCG-Nanocage could readily be ingested/taken by APC macrophages selectively; BCG-Nanocage-ingested macrophages exhibited better viability and developed similar antimicrobial responses with BCG-infected macrophages. BCG-Nanocage, like live BCG bacilli, exhibited the robust capability to activate and expand innate-like T effector cell populations of Vγ2+ T, CD4+ T and CD8+ T cells of rhesus macaques in the ex vivo PBMC culture. BCG-Nanocage immunization of rhesus macaques elicited similar or stronger memory-like immune responses of Vγ2Vδ2 T cells, as well as Vγ2Vδ2 T and CD4+/CD8+ T effectors compared to live BCG vaccination. BCG-Nanocage- immunized macaques developed rapidly-sustained pulmonary responses of Vγ2Vδ2 T cells upon Mtb challenge. Furthermore, BCG- and BCG-Nanocage- immunized macaques, but not saline controls, exhibited undetectable Mtb infection loads or TB lesions in the Mtb-challenged lung lobe and hilar lymph node at endpoint after challenge. Thus, the current study well justifies a large pre-clinical investigation to assess BCG-Nanocage for safe and efficacious anti-TB vaccination, which is expected to further develop novel vaccines or adjuvants.


Subject(s)
BCG Vaccine , CD8-Positive T-Lymphocytes/immunology , Mycobacterium tuberculosis/immunology , Nanostructures/chemistry , Tuberculosis/immunology , Animals , BCG Vaccine/chemistry , BCG Vaccine/immunology , Cells, Cultured , Female , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Macaca mulatta , Male
6.
Proc Natl Acad Sci U S A ; 116(13): 6371-6378, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30850538

ABSTRACT

Tuberculosis (TB) remains a leading killer among infectious diseases, and a better TB vaccine is urgently needed. The critical components and mechanisms of vaccine-induced protection against Mycobacterium tuberculosis (Mtb) remain incompletely defined. Our previous studies demonstrate that Vγ2Vδ2 T cells specific for (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen are unique in primates as multifunctional effectors of immune protection against TB infection. Here, we selectively immunized Vγ2Vδ2 T cells and assessed the effect on infection in a rhesus TB model. A single respiratory vaccination of macaques with an HMBPP-producing attenuated Listeria monocytogenes (Lm ΔactA prfA*) caused prolonged expansion of HMBPP-specific Vγ2Vδ2 T cells in circulating and pulmonary compartments. This did not occur in animals similarly immunized with an Lm ΔgcpE strain, which did not produce HMBPP. Lm ΔactA prfA* vaccination elicited increases in Th1-like Vγ2Vδ2 T cells in the airway, and induced containment of TB infection after pulmonary challenge. The selective immunization of Vγ2Vδ2 T cells reduced lung pathology and mycobacterial dissemination to extrapulmonary organs. Vaccine effects coincided with the fast-acting memory-like response of Th1-like Vγ2Vδ2 T cells and tissue-resident Vγ2Vδ2 effector T cells that produced both IFN-γ and perforin and inhibited intracellular Mtb growth. Furthermore, selective immunization of Vγ2Vδ2 T cells enabled CD4+ and CD8+ T cells to mount earlier pulmonary Th1 responses to TB challenge. Our findings show that selective immunization of Vγ2Vδ2 T cells can elicit fast-acting and durable memory-like responses that amplify responses of other T cell subsets, and provide an approach to creating more effective TB vaccines.


Subject(s)
Immunization , Lymphocyte Activation/drug effects , Tuberculosis Vaccines/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Immunologic Memory/immunology , Interferon-gamma/metabolism , Listeria monocytogenes/genetics , Listeria monocytogenes/immunology , Lung/immunology , Lung/pathology , Macaca mulatta/immunology , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Mycobacterium tuberculosis/drug effects , Organophosphates , Peptide Termination Factors/genetics , Peptide Termination Factors/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Tuberculosis/pathology , Tuberculosis Vaccines/pharmacology , Vaccines, Attenuated/immunology
7.
Plant Dis ; 2022 May 31.
Article in English | MEDLINE | ID: mdl-35640954

ABSTRACT

Geranium wilfordii Maxim. is a weed of perennial herbs and considerable medicinal plant for treating acute and chronic rheumatalgia in China. In August 2019, leaf spots on G. wilfordii were observed in Harbin (45°60'N, 126°64'E), Heilongjiang Province, China. The disease occurred on 15 to 30% of G. wilfordii leaves in three nurseries (~1.5 ha/each nursery). Initial symptoms were brown necrotic spots with a gray-white center, which enlarged gradually from approximately 1 to 5 mm in diameter, and produced concentric rings and became necrotic. Twelve infected tissues from twelve diseased leaves were surface disinfested in 0.5% NaOCl for 5 min, rinsed three times in sterile distilled water, dried on sterilized filter paper and cultured on potato dextrose agar (PDA) amended with 50 µg/ml streptomycin at 26°C for 5 days. Eight fungal cultures with consistent characteristics were obtained and subcultured by transferring hyphal tips onto fresh PDA. Single-conidium isolates were generated with methods reported previously (Leslie and Summerell 2006). Colonies on PDA consisted of cottony, dense, grayish white mycelium, pale gray colony. Conidia of a representative isolate LGC2 were single-celled, hyaline, cylindrical to slightly curved with a rounded apex and truncated base that measured 16.2 to 22.5 µm (length) × 2.6 to 3.7 µm (width) (n = 50). The appressoria were elliptic to claviform or slightly lobed on synthetic nutrient-poor agar. Based on these characteristics, the eight isolates were identified as Colletotrichum dematium (Damm et al. 2009). Genomic DNA was extracted from representative isolates LGC2, LGC3, LGC5 and the internal transcribed spacer regions (ITS),beta-tubulin (TUB2) and actin (ACT) were amplified and sequenced using the primers ITS1/ITS4 (Yin et al. 2012), T1/Bt2b (Glass and Donaldson 1995) and ACT-512F/ACT-783R (Carbone and Kohn 1999), respectively. DNA sequences of isolates LGC2, LGC3, and LGC5 were identical and deposited onto the GenBank (accession nos. MW193053.1 for ITS, MZ357349.1 for TUB2, and OL956946.1 for ACT). MegaBLAST analysis showed 100%, 99.7% and 100% identical to C. dematium isolates CBS 125.25 (accession nos. NR_111453.1 for ITS 552/553 bp, GU228113.1 for TUB2 386/387 bp, and GU227917.1 for ACT 231/231 bp respectively. A pathogenicity test was performed on with a representative isolate LGC2 by spraying spore suspension (1 × 106 conidia/ml) on the surfaces of all leaves of ten healthy three-month-old G. wilfordii plants. All leaves of ten control plants were inoculated with sterile water to serve as the control. All plants were placed in a humidity chamber (>95% RH, 26℃) for 48 h after inoculation and then transfered in a greenhouse at 22/28°C with a 12:12h light-dark cycle for 10 days. All inoculated leaves showed symptoms similar to those observed in the fields, while no symptoms were observed on the control leaves. The experiment was conducted twice. The fungus was re-isolated from the infected leaves and confirmed to be C. dematium according to morphological and molecular characteristics. C. dematium has previously been reported on common knotgrass (Liu et al. 2016), on piper betle (Sun et al. 2020), peanut anthracnose in China (Yu et al. 2020). To our knowledge, this is the first report of C. dematium causing G. wilfordii anthracnose in China. G. wilfordii anthracnose caused by C. dematium poses a threat to significantly reduce the quality of G. wilfordii. Therefore, its distribution needs to be investigated and effective disease management strategies developed.

8.
J Immunol ; 200(7): 2405-2417, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29453279

ABSTRACT

The ability of Mycobacterium tuberculosis to block host antimicrobial responses in infected cells provides a key mechanism for disease pathogenesis. The immune system has evolved to overcome this blockade to restrict the infection, but it is not clear whether two key innate cytokines (IL-12/IL-18) involved in host defense can enhance antimycobacterial mechanisms. In this study, we demonstrated that the combination of IL-12 and IL-18 triggered an antimicrobial response against mycobacteria in infected macrophages (THP-1 and human primary monocyte-derived macrophages) and pulmonary epithelial A549 cells. The inhibition of intracellular bacterial growth required p38-MAPK and STAT4 pathways, the vitamin D receptor, the vitamin D receptor-derived antimicrobial peptide cathelicidin, and autophagy, but not caspase-mediated apoptosis. Finally, the ability of IL-12+IL-18 to activate an innate antimicrobial response in human primary macrophages was dependent on the autonomous production of IFN-γ and the CAMP/autophagy pathway. Together, these data suggest that IL-12+IL-18 cosignaling can trigger the antimicrobial protein cathelicidin and autophagy, resulting in inhibition of intracellular mycobacteria in macrophages and lung epithelial cells.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Immunity, Innate/immunology , Interferon-gamma/immunology , Interleukin-12 Subunit p35/immunology , Interleukin-18/immunology , Macrophages/immunology , Mycobacterium tuberculosis/growth & development , Tuberculosis/immunology , A549 Cells , Autophagy/immunology , Cell Line, Tumor , Epithelial Cells/immunology , Humans , Mycobacterium tuberculosis/immunology , Receptors, Calcitriol/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/immunology , STAT4 Transcription Factor/metabolism , THP-1 Cells , p38 Mitogen-Activated Protein Kinases/metabolism , Cathelicidins
9.
J Immunol ; 200(3): 1016-1026, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29255077

ABSTRACT

The nucleic acids of Mycobacterium tuberculosis can be detected by intracellular DNA sensors, such as cyclic GMP-AMP synthase and absent in melanoma 2 (AIM2), which results in the release of type I IFN and the proinflammatory cytokine IL-1ß. However, whether cross-talk occurs between AIM2-IL-1ß and cyclic GMP-AMP synthase-type I IFN signaling upon M. tuberculosis infection in vivo is unclear. In this article, we demonstrate that mycobacterial infection of AIM2-/- mice reciprocally induces overreactive IFN-ß and depressive IFN-γ responses, leading to higher infection burdens and more severe pathology. We also describe the underlying mechanism whereby activated apoptosis-associated speck-like protein interacts with a key adaptor, known as stimulator of IFN genes (STING), and inhibits the interaction between STING and downstream TANK-binding kinase 1 in bone marrow-derived macrophages and bone marrow-derived dendritic cells, consequently reducing the induction of type I IFN. Of note, apoptosis-associated speck-like protein expression is inversely correlated with IFN-ß levels in PBMCs from tuberculosis patients. These data demonstrate that the AIM2-IL-1ß signaling pathway negatively regulates the STING-type I IFN signaling pathway by impeding the association between STING and TANK-binding kinase 1, which protects the host from M. tuberculosis infection. This finding has potential clinical significance.


Subject(s)
DNA-Binding Proteins/immunology , Interferon-beta/metabolism , Interferon-gamma/immunology , Interleukin-1beta/immunology , Membrane Proteins/metabolism , Mycobacterium bovis/immunology , Protein Serine-Threonine Kinases/metabolism , Tuberculosis/pathology , Animals , CARD Signaling Adaptor Proteins/metabolism , Cell Line , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/immunology , RAW 264.7 Cells , Signal Transduction/immunology , Tuberculosis/microbiology
10.
Angew Chem Int Ed Engl ; 59(8): 3226-3234, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31756258

ABSTRACT

Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial-assisted anti-TB strategy manipulating Ison@Man-Se NPs for synergistic drug-induced and phagolysosomal destruction of Mtb. Ison@Man-Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man-Se/Man-Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man-Se/Man-Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome-associated autophagosomal Mtb degradation linked to ROS-mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial-assisted anti-TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug-resistant TB.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Delivery Systems/methods , Isoniazid/chemistry , Macrophages/drug effects , Mycobacterium tuberculosis/drug effects , Nanoparticles/chemistry , Selenium/chemistry , Tuberculosis/drug therapy , Humans , Tuberculosis/pathology
11.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1464-1474, 2019 Apr.
Article in Zh | MEDLINE | ID: mdl-31090306

ABSTRACT

To predict the targets of active ingredients of Kuihua Hugan Tablets by network pharmacology, and explore the "multi-component-multi-target-multi-pathway" hepatoprotective mechanism of action. First, through traditional Chinese medicine systems pharmacology(TCMSP) and TCM Database@Taiwan Database, main active ingredients of Kuihua Hugan Tablets were screened out based on oral bioavailability(OB), drug-likeness(DL) and effective half-lives(HL). The targets of active ingredients of Kuihua Hugan Tablets were predicted based on the PharmMapper method. Then, the prediction was conducted by screening the target genes associated with chronic hepatitis and early cirrhosis through CooLGeN and GeneCards databases. Target gene functions and signal pathways were analyzed by bioinformatics annotation database Metascape. Cytoscape software was used to construct the Kuihua Hugan Tablets ingredient-target and ingredient-target-pathway network. String database combined with Cytoscape software was used to construct the networks of component-target and component-target-pathway. STRING database was combined with Cytoscape software to draw protein-protein interaction(PPI) network and conduct network topology analysis. Finally, Systems Dock Web Site software was applied in verifying the molecular docking between active ingredients and potential protein targets. A total of 26 compounds and 509 potential targets were screened out from Kuihua Hugan Tablets in the experiment. The results of PPI network analysis indicated that albumin(ALB), insulin-like growth factor 1(IGF1), matrix metalloproteinase-9(MMP9), matrix metalloproteinase-2(MMP2), non-receptor tyrosine kinase proto-oncogene(SRC), estrogen receptor 1(ESR1) and cancer-signal transduction-inflammation-drugs metabolism-related biological processes and metabolic pathways were closely associated with the active ingredients in Kuihua Hugan Tablets. The effects of Kuihua Hugan Tablets in alleviating chronic hepatitis and early cirrhosis indicated the multi-component, multi-target, and multi-pathway characteristics of traditional Chinese medicines, providing new ideas for further research and development of Kuihua Hugan Tablets.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Metabolic Networks and Pathways , Protein Interaction Mapping , Medicine, Chinese Traditional , Molecular Docking Simulation , Tablets
12.
Clin Immunol ; 193: 1-9, 2018 08.
Article in English | MEDLINE | ID: mdl-29753126

ABSTRACT

The PPV23 immunizes healthy elderly and other high-risk populations against pneumococcal disease. Immune mechanisms whereby these populations differently mount antibody(Ab) and cellular responses to PPV23 vaccination remain unknown. Here, healthy elderly, those elderly with prior tuberculosis-cured history (TB-cured), and HIV-infected humans were vaccinated with PPV23, and assessed for opsonophagocytic Ab responses and potential cellular mechanisms. PPV23 vaccination elicited hierarchical responses of opsonophagocytic Ab. PPV23-elicited Ab titers were highest in healthy elderly, significantly lower in TB-cured elderly and lowest in HIV-infected subjects. Mechanistically, high PPV23-elicited Ab titers in healthy elderly were associated with increases in CD19 + CD69+ cells and CD19 + CD138 + plasma cells. Surprisingly, TB-cured elderly failed to show PPV23-induced increases in these cells. While HIV-infected subjects showed a depressed CD19 + CD69+ cellular response, PPV23 vaccination uncovered HIV-related over-reactive increases in CD19 + CD138 + cells. For the first time, we demonstrate that PPV23-elicted opsonophagocytic Ab titers correlate with different cellular responses in healthy, TB-cured and HIV statuses.


Subject(s)
HIV Infections/immunology , HIV-1/physiology , Plasma Cells/immunology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Tuberculosis/immunology , Adult , Aged , Antibody Formation , Antigens, CD/metabolism , Antigens, CD19/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Female , Healthy Volunteers , Humans , Immunity, Cellular , Lectins, C-Type/metabolism , Male , Middle Aged , Phagocytosis , Syndecan-1 , Vaccination
13.
BMC Infect Dis ; 18(1): 453, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30180814

ABSTRACT

BACKGROUND: It is not fully explained why some active tuberculosis patients show negative interferon-γ release assays (IGRAs). In this study, we tried to explore associations of IGRAs with the characteristics of peripheral Vγ2Vδ2 T cells and their functions of producing cytokines. METHODS: 32 pulmonary tuberculosis patients were enrolled and divided into two groups according to their IGRAs results: 16 with IGRA-negative as test group and 16 with IGRA-positive as control group. Chest X-rays and T-SPOT.TB tests were performed and the severity of the lung lesions was scored. The amount of Vγ2Vδ2T cell and their expression levels of the apoptosis-related membrane surface molecule Fas and FasL in peripheral blood were analyzed by flow cytometry, and the function of secreting cytokines (IFN-γ, TNF-α and IL-17A) of Vγ2Vδ2 T cell were determined by intracellular cytokine staining. RESULTS: The IGRA-negative TB patients had more lesion severity scores and displayed reduced peripheral blood Vγ2Vδ2 T cell counts (p = 0.009) as well as higher Fas and FasL expression in peripheral blood Vγ2Vδ2 T cells (p = 0.043, 0.026). A high lesion severity score was correlated with a decreased Vδ2+ T cell number and increased Vγ2Vδ2 T cells Fas/FasL expression leve in the peripheral blood (p = 0.00, P < 0.01). The function of secreting cytokines was slightly impaired in IGRA-negative TB patients (p = 0.402). There is no significant differences in expression levels of Fas and FasL in CD4+ T cells (p = 0.224, 0.287) or CD8+ T cells (p = 0.184, 0.067) between test and control groups. CONCLUSION: Compared with IGRA-positive TB patients, the IGRA-negative TB patients had more lesion severity scores, the number of Vγ2Vδ2 T cells decreased and the function of secreting cytokines impaired. In addition, we suggest that increased expression of Fas/FasL triggers Vγ2Vδ2 T cell apoptosis.


Subject(s)
Interferon-gamma Release Tests , Intraepithelial Lymphocytes/metabolism , Tuberculosis, Pulmonary/diagnosis , Adult , Aged , Case-Control Studies , Cytokines/metabolism , Fas Ligand Protein/blood , Female , Humans , Intraepithelial Lymphocytes/cytology , Male , Middle Aged , Mycobacterium tuberculosis/metabolism , Severity of Illness Index , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Young Adult , fas Receptor/blood
14.
J Infect Dis ; 215(3): 420-430, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27789724

ABSTRACT

A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP-specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23-induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23-induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23-mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti-tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine.


Subject(s)
Interleukin-23/antagonists & inhibitors , Latent Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , T-Lymphocyte Subsets/immunology , Adult , Cell Proliferation , Female , Humans , Interleukin-2/antagonists & inhibitors , Interleukin-2/metabolism , Interleukin-23/immunology , Male , Organophosphates/immunology , Receptors, Antigen, T-Cell, gamma-delta , STAT3 Transcription Factor/metabolism , Signal Transduction
16.
Eur J Immunol ; 45(2): 442-51, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25141829

ABSTRACT

Whether cytokines can influence the adaptive immune response by antigen-specific γδ T cells during infections or vaccinations remains unknown. We previously demonstrated that, during BCG/Mycobacterium tuberculosis (Mtb) infections, Th17-related cytokines markedly upregulated when phosphoantigen-specific Vγ2Vδ2 T cells expanded. In this study, we examined the involvement of Th17-related cytokines in the recall-like responses of Vγ2Vδ2 T cells following Mtb infection or vaccination against TB. Treatment with IL-17A/IL-17F or IL-22 expanded phosphoantigen 4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP)-stimulated Vγ2Vδ2 T cells from BCG-vaccinated macaques but not from naïve animals, and IL-23 induced greater expansion than the other Th17-related cytokines. Consistently, Mtb infection of macaques also enhanced the ability of IL-17/IL-22 or IL-23 to expand HMBPP-stimulated Vγ2Vδ2 T cells. When evaluating IL-23 signaling as a prototype, we found that HMBPP/IL-23-expanded Vγ2Vδ2 T cells from macaques infected with Mtb or vaccinated with BCG or Listeria ΔactA prfA*-ESAT6/Ag85B produced IL-17, IL-22, IL-2, and IFN-γ. Interestingly, HMBPP/IL-23-induced production of IFN-γ in turn facilitated IL-23-induced expansion of HMBPP-activated Vγ2Vδ2 T cells. Furthermore, HMBPP/IL-23-induced proliferation of Vγ2Vδ2 T cells appeared to require APC contact and involve the conventional and novel protein kinase C signaling pathways. These findings suggest that Th17-related cytokines can contribute to recall-like expansion and effector function of Ag-specific γδ T cells after infection or vaccination.


Subject(s)
Interleukin-17/immunology , Mycobacterium tuberculosis/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Th17 Cells/immunology , Tuberculosis/prevention & control , Animals , Bacterial Vaccines/administration & dosage , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression , Interferon-gamma/biosynthesis , Interleukin-17/genetics , Interleukin-17/pharmacology , Interleukin-2/biosynthesis , Interleukin-23/pharmacology , Interleukins/pharmacology , Listeria/immunology , Macaca fascicularis , Mycobacterium bovis/immunology , Organophosphates/immunology , Organophosphates/pharmacology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Recombinant Proteins/pharmacology , Th17 Cells/cytology , Th17 Cells/drug effects , Tuberculosis/immunology , Tuberculosis/microbiology , Vaccination , Interleukin-22
17.
Microb Pathog ; 93: 1-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26792673

ABSTRACT

Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection.


Subject(s)
BCG Vaccine/administration & dosage , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Animals , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , BCG Vaccine/genetics , BCG Vaccine/immunology , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Female , Humans , Immunization, Secondary , Mice , Mice, Inbred C57BL , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/physiology , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Tuberculosis/immunology , Tuberculosis/microbiology
19.
Acta Biochim Biophys Sin (Shanghai) ; 47(8): 588-96, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26112017

ABSTRACT

Few treatment options for multidrug-resistant tuberculosis (TB) and extensively drug-resistant TB call attention to the development of novel therapeutic approaches for TB. Therapeutic vaccines are promising candidates because they can induce antigen-specific cellular immune responses, which play an important role in the elimination of Mycobacterium tuberculosis (MTB). In this study, a novel lentiviral vector therapeutic vaccine for delivering MTB-specific fusion protein Ag85B-Rv3425 was constructed. Results showed that one single-injection of this recombinant lentivirus vaccine could trigger antigen-specific Th1-type immune responses in mice. More importantly, mice with acute infection benefited a lot from a single-dose administration of this vaccine by markedly reduced MTB burdens in lungs and spleens as well as attenuated lesions in lungs compared with untreated mice. These results displayed good prospects of this novel vaccine for the immunotherapy of TB.


Subject(s)
Acyltransferases/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Genetic Vectors , Lentivirus , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Acute Disease , Adaptive Immunity , Animals , Immunotherapy, Active , Mice , Tuberculosis/immunology , Tuberculosis Vaccines/administration & dosage
20.
Microb Pathog ; 69-70: 53-9, 2014.
Article in English | MEDLINE | ID: mdl-24726737

ABSTRACT

Tuberculosis (TB) remains to be an enormous global health problem. The inconsistent protection efficacy of Bacille Calmette-Guérin (BCG) calls for new vaccines for TB. One choice to improve the efficacy of BCG vaccine is recombinant BCG (rBCG). Experimental evidences have revealed that Ag85B, ESAT-6 and Rv3620c are important immunodominant antigens of Mycobacterium tuberculosis. In this study, we have constructed a novel rBCG expressing fusion protein Ag85B-ESAT6-Rv3620c and evaluated the immunogenicity of this rBCG in C57BL/6 mice. Results show that there is a strong TB-specific CD4(+) and CD8(+) T lymphocytes proliferation in mice immunized with this rBCG vaccine. A single dose immunization of rBCG could induce a significantly strong Th1 immune response characterized by an increasing ratio of antigen-specific IgG2b/IgG1 as well as a high expression level of Th1 cytokines such as IFN-γ, TNF-α and IL-2. This conclusion was confirmed by a decreased secretion of Th2 cytokine IL-10. Moreover, this rBCG induced a strong humoral response in mice with an increasing antigen-specific IgG titer. Therefore, we concluded that this rBCG could significantly increase both Th1 type cellular immune response and antigen-specific humoral response compared with BCG. The above observations demonstrated that rBCG::Ag85B-ESAT6-Rv3620c is a potential candidate vaccine against M. tuberculosis for further study.


Subject(s)
Acyltransferases/immunology , Antigens, Bacterial/immunology , BCG Vaccine/immunology , Bacterial Proteins/immunology , Mycobacterium bovis/genetics , Th1 Cells/immunology , Acyltransferases/biosynthesis , Acyltransferases/genetics , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/biosynthesis , Antigens, Bacterial/genetics , BCG Vaccine/administration & dosage , BCG Vaccine/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytokines/metabolism , Immunoglobulin G/blood , Mice, Inbred C57BL , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL