Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
New Phytol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38798233

ABSTRACT

Gene silencing is crucial in crop breeding for desired trait development. RNA interference (RNAi) has been used widely but is limited by ectopic expression of transgenes and genetic instability. Introducing an upstream start codon (uATG) into the 5'untranslated region (5'UTR) of a target gene may 'silence' the target gene by inhibiting protein translation from the primary start codon (pATG). Here, we report an efficient gene silencing method by introducing a tailor-designed uATG-containing element (ATGE) into the 5'UTR of genes in plants, occupying the original start site to act as a new pATG. Using base editing to introduce new uATGs failed to silence two of the tested three rice genes, indicating complex regulatory mechanisms. Precisely inserting an ATGE adjacent to pATG achieved significant target protein downregulation. Through extensive optimization, we demonstrated this strategy substantially and consistently downregulated target protein expression. By designing a bidirectional multifunctional ATGE4, we enabled tunable knockdown from 19% to 89% and observed expected phenotypes. Introducing ATGE into Waxy, which regulates starch synthesis, generated grains with lower amylose, revealing the value for crop breeding. Together, we have developed a programmable and robust method to knock down gene expression in plants, with potential for biological mechanism exploration and crop enhancement.

2.
J Integr Plant Biol ; 66(6): 1048-1051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578176

ABSTRACT

A newly developed rice guanine base editor (OsGTBE) achieves targeted and efficient G-to-T editing (C-to-A in the opposite strand) in rice. Using OsGTBE to edit endogenous herbicide-resistant loci generated several novel alleles conferring herbicide resistance, highlighting its utility in creating valuable germplasm and enhancing genetic diversity..


Subject(s)
Alleles , Gene Editing , Herbicide Resistance , Oryza , Oryza/genetics , Herbicide Resistance/genetics , Gene Editing/methods , Genes, Plant , Herbicides/pharmacology , Base Sequence
3.
J Integr Plant Biol ; 65(3): 646-655, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36218268

ABSTRACT

With the widespread use of clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) technologies in plants, large-scale genome editing is increasingly needed. Here, we developed a geminivirus-mediated surrogate system, called Wheat Dwarf Virus-Gate (WDV-surrogate), to facilitate high-throughput genome editing. WDV-Gate has two parts: one is the recipient callus from a transgenic rice line expressing Cas9 and a mutated hygromycin-resistant gene (HygM) for surrogate selection; the other is a WDV-based construct expressing two single guide RNAs (sgRNAs) targeting HygM and a gene of interest, respectively. We evaluated WDV-Gate on six rice loci by producing a total of 874 T0 plants. Compared with the conventional method, the WDV-Gate system, which was characterized by a transient and high level of sgRNA expression, significantly increased editing frequency (66.8% vs. 90.1%), plantlet regeneration efficiency (2.31-fold increase), and numbers of homozygous-edited plants (36.3% vs. 70.7%). Large-scale editing using pooled sgRNAs targeting the SLR1 gene resulted in a high editing frequency of 94.4%, further demonstrating its feasibility. We also tested WDV-Gate on sequence knock-in for protein tagging. By co-delivering a chemically modified donor DNA with the WDV-Gate plasmid, 3xFLAG peptides were successfully fused to three loci with an efficiency of up to 13%. Thus, by combining transiently expressed sgRNAs and a surrogate selection system, WDV-Gate could be useful for high-throughput gene knock-out and sequence knock-in.


Subject(s)
Gene Editing , Oryza , Gene Editing/methods , CRISPR-Cas Systems , Oryza/genetics , Genome, Plant , Plants/genetics
6.
Hortic Res ; 11(1): uhad250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269296

ABSTRACT

Cytosine and adenosine base editors (CBE and ABE) have been widely used in plants, greatly accelerating gene function research and crop breeding. Current base editors can achieve efficient A-to-G and C-to-T/G/A editing. However, efficient and heritable A-to-Y (A-to-T/C) editing remains to be developed in plants. In this study, a series of A-to-K base editor (AKBE) systems were constructed for monocot and dicot plants. Furthermore, nSpCas9 was replaced with the PAM-less Cas9 variant (nSpRY) to expand the target range of the AKBEs. Analysis of 228 T0 rice plants and 121 T0 tomato plants edited using AKBEs at 18 endogenous loci revealed that, in addition to highly efficient A-to-G substitution (41.0% on average), the plant AKBEs can achieve A-to-T conversion with efficiencies of up to 25.9 and 10.5% in rice and tomato, respectively. Moreover, the rice-optimized AKBE generates A-to-C conversion in rice, with an average efficiency of 1.8%, revealing the significant value of plant-optimized AKBE in creating genetic diversity. Although most of the A-to-T and A-to-C edits were chimeric, desired editing types could be transmitted to the T1 offspring, similar to the edits generated by the traditional ABE8e. Besides, using AKBEs to target tyrosine (Y, TAT) or cysteine (C, TGT) achieved the introduction of an early stop codon (TAG/TAA/TGA) of target genes, demonstrating its potential use in gene disruption.

7.
Front Plant Sci ; 14: 1134209, 2023.
Article in English | MEDLINE | ID: mdl-37063194

ABSTRACT

In-locus editing of agronomically-important genes to optimize their spatiotemporal expression is becoming an important breeding approach. Compared to intensive studies on mRNA transcription, manipulating protein translation by genome editing has not been well exploited. Here, we found that precise knock-in of a regulating element into the 5'UTR of a target gene could efficiently increase its protein abundance in rice. We firstly screened a translational enhancer (AMVE) from alfalfa mosaic virus using protoplast-based luciferase assays with an 8.5-folds enhancement. Then the chemically modified donor of AMVE was synthesized and targeted inserted into the 5'UTRs of two genes (WRKY71 and SKC1) using CRISPR/Cas9. Following the in-locus AMVE knock-in, we observed up to a 2.8-fold increase in the amount of WRKY71 protein. Notably, editing of SKC1, a sodium transporter, significantly increased salt tolerance in T2 seedlings, indicating the expected regulation of AMVE knock-in. These data demonstrated the feasibility of such in-locus editing to enhance protein expression, providing a new approach to manipulating protein translation for crop breeding.

8.
Nat Biotechnol ; 38(12): 1402-1407, 2020 12.
Article in English | MEDLINE | ID: mdl-32632302

ABSTRACT

CRISPR-Cas9 methods have been applied to generate random insertions and deletions, large deletions, targeted insertions or replacements of short sequences, and precise base changes in plants1-7. However, versatile methods for targeted insertion or replacement of long sequences and genes, which are needed for functional genomics studies and trait improvement in crops, are few and largely depend on the use of selection markers8-11. Building on methods developed in mammalian cells12, we used chemically modified donor DNA and CRISPR-Cas9 to insert sequences of up to 2,049 base pairs (bp), including enhancers and promoters, into the rice genome at an efficiency of 25%. We also report a method for gene replacement that relies on homology-directed repair, chemically modified donor DNA and the presence of tandem repeats at target sites, achieving replacement with up to 130-bp sequences at 6.1% efficiency.


Subject(s)
Mutagenesis, Insertional/genetics , Oryza/genetics , Base Sequence , DNA, Plant/genetics , Gene Editing , Genetic Loci , Genome, Plant , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL