Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Small ; 18(50): e2204683, 2022 12.
Article in English | MEDLINE | ID: mdl-36310129

ABSTRACT

Commercialization of aqueous batteries is mainly hampered by their low energy density, owing to the low mass loading of active cathode materials. In this work, a MnO2 cathode structure (MnO2 /CTF) is designed to modify the MnO2 /collector interface for enhanced ion transportation properties. Such a cathode can achieve ultrahigh mass loading of MnO2 , large areal capacity, and high energy density, with excellent cycling stability and rate performance. Specifically, a 0.15 mm thick MnO2 /CTF cathode can realize a mass loading of 20 mg cm-2 with almost 100% electrochemical conversion of MnO2 , providing the maximum areal capacity of 12.08 mA h cm-2 and energy density of 191 W h kg-1 for Zn-MnO2 /CTF batteries when considering both cathode and anode. Besides the conventional low energy demonstrations, such a Zn-MnO2 /CTF battery is capable of realistic applications, such as mobile phones in our daily life, which is a promising alternative for wearable electronics.


Subject(s)
Manganese Compounds , Oxides , Zinc , Electric Power Supplies
2.
J Chem Inf Model ; 61(1): 284-297, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33307679

ABSTRACT

Mouse major urinary protein (MUP) plays a key role in the pheromone communication system. The one-end-closed ß-barrel of MUP-I forms a small, deep, and hydrophobic central cavity, which could accommodate structurally diverse ligands. Previous computational studies employed old protein force fields and short simulation times to determine the binding thermodynamics or investigated only a small number of structurally similar ligands, which resulted in sampled regions far from the experimental structure, nonconverged sampling outcomes, and limited understanding of the possible interaction patterns that the cavity could produce. In this work, extensive end-point and alchemical free-energy calculations with advanced protein force fields were performed to determine the binding thermodynamics of a series of MUP-inhibitor systems and investigate the inter- and intramolecular interaction patterns. Three series of inhibitors with a total of 14 ligands were simulated. We independently simulated the MUP-inhibitor complexes under two advanced AMBER force fields. Our benchmark test showed that the advanced AMBER force fields including AMBER19SB and AMBER14SB provided better descriptions of the system, and the backbone root-mean-square deviation (RMSD) was significantly lowered compared with previous computational studies with old protein force fields. Surprisingly, although the latest AMBER force field AMBER19SB provided better descriptions of various observables, it neither improved the binding thermodynamics nor lowered the backbone RMSD compared with the previously proposed and widely used AMBER14SB. The older but widely used AMBER14SB actually achieved better performance in the prediction of binding affinities from the alchemical and end-point free-energy calculations. We further analyzed the protein-ligand interaction networks to identify important residues stabilizing the bound structure. Six residues including PHE38, LEU40, PHE90, ALA103, LEU105, and TYR120 were found to contribute the most significant part of protein-ligand interactions, and 10 residues were found to provide favorable interactions stabilizing the bound state. The two AMBER force fields gave extremely similar interaction networks, and the secondary structures also showed similar behavior. Thus, the intra- and intermolecular interaction networks described with the two AMBER force fields are similar. Therefore, AMBER14SB could still be the default option in free-energy calculations to achieve highly accurate binding thermodynamics and interaction patterns.


Subject(s)
Benchmarking , Molecular Dynamics Simulation , Animals , Ligands , Mice , Protein Binding , Thermodynamics
3.
Environ Sci Technol ; 52(3): 1413-1420, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29286654

ABSTRACT

A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl-, in which Cl· generated from oxidation of Cl- by photoholes selectively converted NH4+ to nitrogen gas and some NO3- or NO2-. The NO3- or NO2- was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L-1 inorganic nitrogen (NO3-, NH4+, NO3-/NH4+ = 1:1 and NO2-/NO3-/NH4+ = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min-1, which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.


Subject(s)
Chlorine , Nitrogen , Electrodes , Gases , Nitrates
4.
Adv Mater ; : e2408287, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967293

ABSTRACT

Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.

5.
ACS Appl Mater Interfaces ; 15(24): 29032-29041, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37289989

ABSTRACT

Because of the high safety and environmental friendliness, aqueous zinc-ion batteries have gained a lot of attention in recent years. Prussian blue and its analogues are regarded as a promising cathode material of zinc-ion batteries. Manganese hexacyanoferrate is appropriate among them due to its high operating voltage, large capacity, and cheap price. However, the poor cycling stability of manganese hexacyanoferrate, mainly caused by transition metal dissolution, side reaction, and phase transition, greatly restricts its practical application. In this work, gelatin is used to limit the content of free water in the electrolyte, thus reducing the dissolution effect of transition metal manganese. The introduction of gelatin improves the durability of the Zn anode as well. The optimized MnHCF/gel-0.3/Zn battery displays a high reversible capacity (120 mAh·g-1 at 0.1 A·g-1), an excellent rate performance (42.7 mAh·g-1 at 2 A·g-1), and a good capacity retention (65% at 0.5 A·g-1 after 1000 cycles).

6.
ACS Nano ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622271

ABSTRACT

Potassium (K) metal batteries have attracted great attention owing to their low price, widespread distribution, and comparable energy density. However, the arbitrary dendrite growth and side reactions of K metal are attributed to high environmental sensitivity, which is the Achilles' heel of its commercial development. Interface engineering between the current collector and K metal can tailor the surface properties for K-ion flux accommodation, dendrite growth inhibition, parasitic reaction suppression, etc. We have designed bifunctional layers via prepassivation, which can be recognized as an O/F-rich Sn-K alloy and a preformed solid-electrolyte interphase (SEI) layer. This Sn-K alloy with high substrate-related binding energy and Fermi level demonstrates strong potassiophilicity to homogeneously guide K metal deposition. Simultaneously, the preformed SEI layer can effectually eliminate side reactions initially, which is beneficial for the spatially and temporally KF-rich SEI layer on K metal. K metal deposition and protection can be implemented by the bifunctional layers, delivering great performance with a low nucleation overpotential of 0.066 V, a high average Coulombic efficiency of 99.1%, and durable stability of more than 900 h (1 mA cm-2, 1 mAh cm-2). Furthermore, the high-voltage platform, energy, and power densities of K metal batteries can be realized with a conventional Prussian blue analogue cathode. This work provides a paradigm to passivate fragile interfaces for alkali metal anodes.

7.
Adv Sci (Weinh) ; 9(4): e2104375, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34894097

ABSTRACT

The "shuttle effect" of soluble polysulfides and slow reaction kinetics hinder the practical application of Li-S batteries. Transition metal oxides are promising mediators to alleviate these problems, but the poor electrical conductivity limits their further development. Herein, the homogeneous CoNiO2 /Co4 N nanowires have been fabricated and employed as additive of graphene based sulfur cathode. Through optimizing the nitriding degree, the continuous heterostructure interface can be obtained, accompanied by effective adjustment of energy band structure. By combining the strong adsorptive and catalytic properties of CoNiO2 and electrical conductivity of Co4 N, the in situ formed CoNiO2 /Co4 N heterostructure reveals a synergistic enhancement effect. Theoretical calculation and experimental design show that it can not only significantly inhibit "shuttle effect" through chemisorption and catalytic conversion of polysulfides, but also improve the transport rate of ions and electrons. Thus, the graphene composite sulfur cathode supported by these CoNiO2 /Co4 N nanowires exhibits improved sulfur species reaction kinetics. The corresponding cell provides a high rate capacity of 688 mAh g-1 at 4 C with an ultralow decaying rate of ≈0.07% per cycle over 600 cycles. The design of heterostructure nanowires and graphene composite structure provides an advanced strategy for the rapid capture-diffusion-conversion process of polysulfides.

8.
Sci Rep ; 12(1): 4526, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296762

ABSTRACT

Titanium alloy has become a promising candidate material for oil country tubular goods (OCTGs) in harsh service environments owing to its high specific strength, low density, low elastic modulus, excellent toughness, excellent anti-fatigue and corrosion resistance. However, because the high-quality natural gas resources in China are mainly concentrated deep underground, titanium alloy tubing and casing will bear great external pressure loads underground, so the collapse strength of titanium alloy tubing and casing is very important for the safety of the string in the well. In this paper, a new collapse strength calculation model, the strength collapse criterion model (SCM), was proposed for titanium alloy tubing and casing. 35 different specifications of titanium alloy tubing and casing were selected for the full-scale collapse tests to verify the reliability of the established SCM model. Furthermore, the effect of different key parameters (such as strength, ovality, eccentricity and residual stress) on collapse strength of titanium alloy pipes were investigated systematically and compared with the same specifications of steel pipes. The strength collapse criterion model and analysis results can provide a technical reference for the design and use of titanium alloy OCTGs in the petroleum and natural gas industries.

9.
Adv Mater ; 34(44): e2205625, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36114744

ABSTRACT

Maintaining the morphology of electrode materials with high invertibility contributes to the prolonged cyclic stability of battery systems. However, the majority of electrode materials tend to degrade during the charge-discharge process owing to the inevitable increase in entropy. Herein, a self-healing strategy is designed to promote morphology rejuvenation in Prussian blue analogue (PBA) cathodes by cobalt doping. Experimental characterization and theoretical calculations demonstrate that a trace amount of cobalt can decelerate the crystallization process and restore the cracked areas to ensure perfect cubic structures of PBA cathodes. The electric field controls the kinetic dynamics, rather than the conventional thermodynamics, to realize the "electrochemically driven dissolution-recrystallization process" for the periodic self-healing phenomenon. The properties of electron transportation and ion diffusion in bulk PBA are also improved by the doping strategy, thus boosting the cyclability with 4000 cycles in a diluent electrolyte. This discovery provides a new paradigm for the construction of self-healing electrodes for cathodes.

10.
Water Res ; 170: 115357, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31812812

ABSTRACT

Urea is a major source of nitrogen pollution in domestic sewage and its denitrification is difficult since it is very likely to be converted into ammonia or nitrate instead of expected N2. Herein, we propose an exhaustive denitrification method for urea via the oxidation of amine/ammonia-N with chlorine oxide radical, which induced from a bi-functional RuO2//WO3 anode, and the highly selective reduction of nitrate-N on cathode in photoelectrochemical cell (PEC). Under illumination, the WO3 photoanode side promotes the quantities hydroxyl and reactive chlorine radical, and these radicals are immediately combined to stronger chlorine oxide radical by RuO2 side, which obviously enhances the efficiency and speed of the urea oxidation. Synchronously, the over-oxidized nitrate can be selectively reduced by Pd and Au nanoparticles on the surface of cathode. Eventually, exhaustive denitrification is realized by the circulative reaction. Experimental observations and theoretical calculation revealed that chlorine oxide radical promoted significant denitrification of urea with an efficiency of 99.74% in 60 min under the optimum condition. The removal rate constant of the RuO2//WO3 anode was 3.08 times than that of single WO3 anode and 2.64 times than that of single RuO2 anode, confirming the chlorine oxide radical had stronger ability on denitrification than reactive chlorine radical. Also, the bi-functional anode contributed to best current efficiencies, utilizing the energy availably. This work proposes a promising method of exhaustive denitrification for urea.


Subject(s)
Denitrification , Metal Nanoparticles , Chlorine , Gold , Nitrates , Nitrogen , Oxidation-Reduction , Oxides , Urea
11.
Water Res ; 152: 117-125, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30665158

ABSTRACT

Urine is a major biomass resource, and its excessive discharge would lead to severe aquatic nitrogen pollution and even eutrophication. In this study, we designed an innovative denitrifying fuel cell (DFC) under illumination to purify urine and convert its chemical energy into electricity. The central ideas include the following: 1) on the anode, chlorine radicals (Cl) and hydroxyl (HO) radicals were induced to react with amine or ammonia in urine into N2, and to mineralize organics into CO2, respectively; 2) on the cathode, NO2- or NO3- generated in the cell was selectively reduced to N2 and tiny NH4+ by Pd/Au/NF; 3) NH4+ was further oxidized to N2 by Cl according to process 1), then the total nitrogen (TN) was ultimately removed by a continuous redox loop between anode and cathode; 4) the separation and migration of charges were strengthened by a self-bias poly-Si/WO3 photoanode. Result indicated that the DFC showed an efficient yield of electricity and almost completely N-removing properties: power density of 2.24 mW cm-2, total nitrogen and total organic carbon (TOC) removal efficiency, respectively 99.02% and 50.76% for artificial urine; and power density of 2.51 mW cm-2, TN and TOC removal efficiency, respectively 98.60% and 54.55% for actual urine. The study proposes a potential and environment-friendly approach by using novel DFC to purify urine and generate electricity.


Subject(s)
Bioelectric Energy Sources , Nitrogen , Ammonia , Chlorine , Electricity , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL