Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
FASEB J ; 38(2): e23446, 2024 02.
Article in English | MEDLINE | ID: mdl-38275125

ABSTRACT

Endothelial dysfunction is common in patients with chronic kidney disease (CKD) and cardiovascular events, but the mechanism is unclear. In our study, we found elevated levels of RIPK1 in patients with CKD and cardiovascular events through bioinformation analysis. Elevated RIPK1 levels were found in serum samples of CKD patients and were associated with vascular endothelial dysfunction and renal function. We constructed the five of six nephrectomy of CKD mice model, finding that RIPK1 expressions were elevated in abdominal aorta endothelial cells. After RIPK1 inhibition and overexpression, it was found that RIPK1 could regulate the expression of endothelial nitric oxide synthase (eNOS) and cell adhesion molecule 1 (ICAM-1), and activation of inflammatory responses and endoplasmic reticulum (ER) stress. In addition, uremic toxin induced abnormal expression of RIPK1 in vitro. We observed RIPK1-mediating endothelial dysfunction and inflammation responses by ER stress pathways through gain and loss of function. In order to explore the specific mechanism, we conducted co-immunoprecipitation and expression regulation of RIPK1 and IKK, finding that RIPK1 formed complex with IKK and regulated IKK expression. In conclusion, we demonstrated that RIPK1 levels were closely associated with vascular endothelial dysfunction in patients with CKD. With uremic toxins, RIPK1 expression was elevated, which led to the activation of inflammation through the ER stress pathway, resulting in vascular endothelial injury. Besides, activation of RIPK1-IKK-NF-κB axis was a key driver of endothelial dysfunction in CKD. Our study provides a new perspective for the study of cardiovascular events in CKD.


Subject(s)
Renal Insufficiency, Chronic , Vascular Diseases , Animals , Humans , Mice , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Inflammation/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Renal Insufficiency, Chronic/metabolism , Vascular Diseases/metabolism
2.
FASEB J ; 38(2): e23409, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38193628

ABSTRACT

Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Diabetic Nephropathies , Podocytes , Serum Amyloid A Protein , Animals , Mice , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Diabetic Nephropathies/genetics , Glucose , Inflammation/genetics , NF-kappa B , RNA, Messenger/genetics , Signal Transduction , Serum Amyloid A Protein/genetics
3.
Clin Epigenetics ; 15(1): 170, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865763

ABSTRACT

Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.


Subject(s)
DNA Methylation , Kidney Diseases , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kidney/metabolism , Kidney Diseases/genetics
4.
Front Immunol ; 14: 1084448, 2023.
Article in English | MEDLINE | ID: mdl-36776877

ABSTRACT

Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Humans , Diabetic Nephropathies/etiology , Diabetic Nephropathies/drug therapy , T-Lymphocytes , Cytokines/therapeutic use
5.
Mol Cell Endocrinol ; 578: 112065, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37690472

ABSTRACT

Podocyte dysfunction has been identified as a crucial pathological characteristic of diabetic nephropathy (DN). However, the regulatory effects of long non-coding RNAs (lncRNAs) in this process have not been fully elucidated. Here, we performed an unbiased RNA-sequencing (RNA-seq) analysis of renal tissues and identified a significantly upregulated long non-coding RNA, ENST00000585189.1 (lncRNA 585189), in patients with DN. Furthermore, lncRNA 585189 was positively correlated with renal insufficiency and was upregulated in both DN patients and high-glucose-induced human podocytes. Gain- and loss-of-function experiments revealed that silencing lncRNA 585189 decreased the production of ROS, rescued aberrant mitochondrial morphology and membrane potential, and alleviated podocyte damage caused by high glucose. Mechanistically, bioinformatics analysis predicted an interaction between lncRNA 585189 and hnRNP A1, which was subsequently confirmed by RIP, pull-down, and EMSA assays. Further investigation revealed that lncRNA 585189 destabilizes the hnRNP A1 protein, leading to the downregulation of its expression. Conversely, hnRNP A1 promoted the expression of lncRNA 585189. Moreover, both RIP and pull-down assays demonstrated a direct interaction between hnRNP A1 and SIRT1, which enhanced SIRT1 mRNA stability. Our findings suggest that lncRNA 585189 suppresses SIRT1 through hnRNP A1, thereby hindering the recovery from mitochondrial abnormalities and podocyte damage. In summary, targeting lncRNA 585189 is a promising strategy for reversing mitochondrial dysfunction and treating DN.

6.
Redox Biol ; 62: 102674, 2023 06.
Article in English | MEDLINE | ID: mdl-36989575

ABSTRACT

Renal fibrosis is the common histopathological feature of chronic kidney diseases (CKD), and there is increasing evidence that epigenetic regulation is involved in the occurrence and progression of renal fibrosis. N-myc downstream-regulated gene 2 (NDRG2) is significantly down-regulated in renal fibrosis, the mechanism of which remains unclear. Previous studies have confirmed that the inhibition of NDRG2 expression in tumor cells is related to hyper-methylation, mainly regulated by DNA methyltransferases (DNMTS). Herein, we explored the expression of NDRG2 and its epigenetic regulatory mechanism in renal fibrosis. The results showed that the expression of NDRG2 was significantly inhibited in vivo and in vitro, while the overexpression of NDRG2 effectively alleviated renal fibrosis. Meanwhile, we found that the expression of DNMT1/3A/3B was significantly increased in hypoxia-induced HK2 cells and Unilateral Ureteral Obstruction (UUO) mice accompanied by hyper-methylation of the NDGR2 promoter. Methyltransferase inhibitor (5-AZA-dC) corrected the abnormal expression of DNMT1/3A/3B, reduced the methylation level of NDRG2 promoter and restored the expression of NDRG2. The upstream events that mediate changes in NDRG2 methylation were further explored. Reactive oxygen species (ROS) are important epigenetic regulators and have been shown to play a key role in renal injury due to various causes. Accordingly, we further explored whether ROS could induce DNA-epigenetic changes of the expression of NDRG2 and then participated in the development of renal fibrosis. Our results showed that mitochondria-targeted antioxidants (Mito-TEMPO) could reverse the epigenetic inhibition of NDRG2 in a DNMT-sensitive manner, showing strong ability of DNA demethylation, exhibiting epigenetic regulation and anti-fibrosis effects similar to 5-AZA-dC. More importantly, the anti-fibrotic effects of 5-AZA-dC and Mito-TEMPO were eliminated in HK2 cells with NDRG2 knockdown. These findings highlight that targeting ROS-mediated hyper-methylation of NDRG2 promoter is a potentially effective therapeutic strategy for renal fibrosis, which will provide new insights into the treatment of CKD.


Subject(s)
DNA, A-Form , Renal Insufficiency, Chronic , Animals , Mice , Epigenesis, Genetic , Reactive Oxygen Species , Methyltransferases/genetics , DNA Methylation , Fibrosis , Renal Insufficiency, Chronic/pathology , Azacitidine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL