Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38565148

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
2.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37421948

ABSTRACT

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Subject(s)
Brain Diseases , Intellectual Disability , Humans , Brain Diseases/genetics , Ion Channels/genetics , Brain , Intellectual Disability/genetics , Phenotype
3.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37857482

ABSTRACT

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Subject(s)
Intellectual Disability , Nervous System Malformations , Infant, Newborn , Female , Humans , Corpus Callosum , Agenesis of Corpus Callosum/genetics , Nervous System Malformations/genetics , Intellectual Disability/genetics , Cognition , Zinc Finger E-box-Binding Homeobox 1/genetics
4.
Am J Hum Genet ; 108(8): 1450-1465, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34186028

ABSTRACT

The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.


Subject(s)
Chloride Channels/genetics , Disease Models, Animal , Ion Channels/physiology , Mutation , Neurodevelopmental Disorders/pathology , Phenotype , Adolescent , Animals , Child , Child, Preschool , Female , Homozygote , Humans , Infant , Infant, Newborn , Male , Mice , Mice, Knockout , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism
5.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33894126

ABSTRACT

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Subject(s)
Agenesis of Corpus Callosum/genetics , Cerebellum/abnormalities , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Adult , Agenesis of Corpus Callosum/diagnostic imaging , Cerebellum/diagnostic imaging , Child , Child, Preschool , Female , Humans , Hydrolases/chemistry , Hydrolases/genetics , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Male , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Neurodevelopmental Disorders/diagnostic imaging , Tubulin/metabolism , Young Adult
6.
Am J Hum Genet ; 108(6): 1069-1082, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34022130

ABSTRACT

BCAS3 microtubule-associated cell migration factor (BCAS3) is a large, highly conserved cytoskeletal protein previously proposed to be critical in angiogenesis and implicated in human embryogenesis and tumorigenesis. Here, we established BCAS3 loss-of-function variants as causative for a neurodevelopmental disorder. We report 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. The human phenotype is less severe compared with the Bcas3 knockout mouse model and cannot be explained by angiogenic defects alone. Consistent with being loss-of-function alleles, we observed absence of BCAS3 in probands' primary fibroblasts. By comparing the transcriptomic and proteomic data based on probands' fibroblasts with those of the knockout mouse model, we identified similar dysregulated pathways resulting from over-representation analysis, while the dysregulation of some proposed key interactors could not be confirmed. Together with the results from a tissue-specific Drosophila loss-of-function model, we demonstrate a vital role for BCAS3 in neural tissue development.


Subject(s)
Loss of Function Mutation , Loss of Heterozygosity , Neoplasm Proteins/genetics , Neurodevelopmental Disorders/etiology , Adolescent , Adult , Animals , Cell Movement , Child , Child, Preschool , Drosophila , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Male , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Pedigree , Proteome/analysis , Young Adult
7.
J Med Genet ; 60(10): 999-1005, 2023 10.
Article in English | MEDLINE | ID: mdl-37185208

ABSTRACT

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Subject(s)
Intellectual Disability , Microcephaly , Periventricular Nodular Heterotopia , Humans , Brain/diagnostic imaging , Genotype , Intellectual Disability/genetics , Phenotype , Seizures/genetics
8.
J Hum Genet ; 68(4): 291-298, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36536096

ABSTRACT

A recent study revealed that monoallelic missense or biallelic loss-of-function variants in the chloride voltage-gated channel 3 (CLCN3) cause neurodevelopmental disorders resulting in brain abnormalities. Functional studies suggested that some missense variants had varying gain-of-function effects on channel activity. Meanwhile, two patients with homozygous frameshift variants showed severe neuropsychiatric disorders and a range of brain structural abnormalities. Here we describe two patients with de novo CLCN3 variants affecting the same amino acid, Gly327 (p.(Gly327Ser) and p.(Gly327Asp)). They showed severe neurological phenotypes including global developmental delay, intellectual disability, hypotonia, failure to thrive, and various brain abnormalities. They also presented with characteristic brain and ophthalmological abnormalities, hippocampal and retinal degradation, which were observed in patients harboring homozygous loss-of-function variants. These findings were also observed in CLCN3-deficient mice, indicating that the monoallelic missense variant may also have a dominant negative effect. This study will expand the phenotypic spectrum of CLCN3-related disorders.


Subject(s)
Brain Diseases , Intellectual Disability , Nervous System Malformations , Neurodevelopmental Disorders , Animals , Mice , Brain/diagnostic imaging , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Syndrome
9.
J Med Genet ; 59(7): 697-705, 2022 07.
Article in English | MEDLINE | ID: mdl-34321323

ABSTRACT

BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Autism Spectrum Disorder/genetics , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Seizures/epidemiology , Seizures/genetics , Syndrome , Exome Sequencing
10.
Am J Med Genet C Semin Med Genet ; 190(2): 222-230, 2022 06.
Article in English | MEDLINE | ID: mdl-35838066

ABSTRACT

In the US, newborn screening (NBS) is a unique health program that supports health equity and screens virtually every baby after birth, and has brought timely treatments to babies since the 1960's. With the decreasing cost of sequencing and the improving methods to interpret genetic data, there is an opportunity to add DNA sequencing as a screening method to facilitate the identification of babies with treatable conditions that cannot be identified in any other scalable way, including highly penetrant genetic neurodevelopmental disorders (NDD). However, the lack of effective dietary or drug-based treatments has made it nearly impossible to consider NDDs in the current NBS framework, yet it is anticipated that any treatment will be maximally effective if started early. Hence there is a critical need for large scale pilot studies to assess if and how NDDs can be effectively screened at birth, if parents desire that information, and what impact early diagnosis may have. Here we attempt to provide an overview of the recent advances in NDD treatments, explore the possible framework of setting up a pilot study to genetically screen for NDDs, highlight key technical, practical, and ethical considerations and challenges, and examine the policy and health system implications.


Subject(s)
Neonatal Screening , Neurodevelopmental Disorders , Infant , Infant, Newborn , Humans , Neonatal Screening/methods , Pilot Projects , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Parents
11.
Am J Hum Genet ; 105(4): 854-868, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585109

ABSTRACT

Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).


Subject(s)
Axons/pathology , Cadherins/genetics , Corpus Callosum/pathology , Eye/pathology , Genitalia/pathology , Heart Defects, Congenital/genetics , Neurodevelopmental Disorders/genetics , Frameshift Mutation , Heterozygote , Humans , Neurodevelopmental Disorders/pathology
12.
Genet Med ; 24(10): 2065-2078, 2022 10.
Article in English | MEDLINE | ID: mdl-35980381

ABSTRACT

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Subject(s)
Neurodevelopmental Disorders , Nonmuscle Myosin Type IIB , Actins , Cilia/genetics , Hedgehog Proteins/genetics , Humans , Myosin Heavy Chains/genetics , Neurodevelopmental Disorders/genetics , Nonmuscle Myosin Type IIB/genetics
13.
J Hum Genet ; 67(2): 95-101, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34400773

ABSTRACT

OBJECTIVE: BCORL1, a transcriptional co-repressor, has a role in cortical migration, neuronal differentiation, maturation, and cerebellar development. We describe BCORL1 as a new genetic cause for major brain malformations. METHODS AND RESULTS: We report three patients from two unrelated families with neonatal onset intractable epilepsy and profound global developmental delay. Brain MRI of two siblings from the first family depicted hypoplastic corpus callosum and septal agenesis (ASP) in the older brother and unilateral perisylvian polymicrogyria (PMG) in the younger one. MRI of the patient from the second family demonstrated complete agenesis of corpus callosum (CC). Whole Exome Sequencing revealed a novel hemizygous variant in NM_021946.5 (BCORL1):c.796C>T (p.Pro266Ser) in the two siblings from the first family and the NM_021946.5 (BCORL1): c.3376G>A; p.Asp1126Asn variant in the patient from the second family, both variants inherited from healthy mothers. We reviewed the patients' charts and MRIs and compared the phenotype to the other published BCORL1-related cases. Brain malformations have not been previously described in association with the BCORL1 phenotype. We discuss the potential influence of BCORL1 on brain development. CONCLUSIONS: We suggest that BCORL1 variants present with a spectrum of neurodevelopmental disorders and can lead to major brain malformations originating at different stages of fetal development. We suggest adding BCORL1 to the genetic causes of PMG, ASP, and CC dysgenesis.


Subject(s)
Agenesis of Corpus Callosum/genetics , Brain/metabolism , Nervous System Malformations/genetics , Polymicrogyria/genetics , Repressor Proteins/genetics , Septum Pellucidum/metabolism , Brain/abnormalities , Brain/diagnostic imaging , Child , Child, Preschool , Family Health , Humans , Infant , Magnetic Resonance Imaging/methods , Male , Mutation , Septum Pellucidum/abnormalities , Exome Sequencing/methods
14.
Pediatr Res ; 91(4): 896-902, 2022 03.
Article in English | MEDLINE | ID: mdl-33846556

ABSTRACT

BACKGROUND: The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. METHODS: Case-control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. RESULTS: Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. CONCLUSIONS: In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. IMPACT: We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


Subject(s)
Epilepsy , Infant, Newborn, Diseases , Case-Control Studies , Child , Epilepsy/genetics , Humans , Infant, Newborn , Infant, Newborn, Diseases/genetics , Mutation , Pilot Projects , Seizures/epidemiology , Seizures/genetics , Exome Sequencing
15.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388402

ABSTRACT

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Subject(s)
Haploinsufficiency/genetics , Intellectual Disability/genetics , Megalencephaly/genetics , NFI Transcription Factors/genetics , Adolescent , Adult , Animals , Cerebral Cortex/pathology , Child , Child, Preschool , Codon, Nonsense/genetics , Cohort Studies , Corpus Callosum/pathology , Female , Humans , Male , Mice , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Young Adult
16.
Ann Neurol ; 88(2): 264-273, 2020 08.
Article in English | MEDLINE | ID: mdl-32342562

ABSTRACT

OBJECTIVE: Genome sequencing (GS) is promising for unsolved leukodystrophies, but its efficacy has not been prospectively studied. METHODS: A prospective time-delayed crossover design trial of GS to assess the efficacy of GS as a first-line diagnostic tool for genetic white matter disorders took place between December 1, 2015 and September 27, 2017. Patients were randomized to receive GS immediately with concurrent standard of care (SoC) testing, or to receive SoC testing for 4 months followed by GS. RESULTS: Thirty-four individuals were assessed at interim review. The genetic origin of 2 patient's leukoencephalopathy was resolved before randomization. Nine patients were stratified to the immediate intervention group and 23 patients to the delayed-GS arm. The efficacy of GS was significant relative to SoC in the immediate (5/9 [56%] vs 0/9 [0%]; Wild-Seber, p < 0.005) and delayed (control) arms (14/23 [61%] vs 5/23 [22%]; Wild-Seber, p < 0.005). The time to diagnosis was significantly shorter in the immediate-GS group (log-rank test, p = 0.04). The overall diagnostic efficacy of combined GS and SoC approaches was 26 of 34 (76.5%, 95% confidence interval = 58.8-89.3%) in <4 months, greater than historical norms of <50% over 5 years. Owing to loss of clinical equipoise, the trial design was altered to a single-arm observational study. INTERPRETATION: In this study, first-line GS provided earlier and greater diagnostic efficacy in white matter disorders. We provide an evidence-based diagnostic testing algorithm to enable appropriate clinical GS utilization in this population. ANN NEUROL 2020;88:264-273.


Subject(s)
Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Sequence Analysis, DNA/methods , Child , Child, Preschool , Cross-Over Studies , Female , Humans , Infant , Male , Prospective Studies , White Matter/pathology
17.
J Med Genet ; 57(7): 461-465, 2020 07.
Article in English | MEDLINE | ID: mdl-31924697

ABSTRACT

INTRODUCTION: Whole-exome sequencing (WES) has identified de novo variants in chromatin remodelling genes in patients with neurodevelopmental disorders (NDD). We report on a novel genetic discovery in chromatin remodelling in patients with NDD who also have corpus callosum (CC) anomalies. OBJECTIVE: To discover novel genes linked to both CC anomalies and NDD. METHODS: Clinical WES was performed for evaluation of NDD, identifying five patients with de novo variants in SUPT16H, a subunit of the FACT (facilitates chromatin transcription) complex. The clinical phenotypes, genetic results and brain MRIs were obtained and systematically reviewed. In silico protein function predictions were assessed and allele frequencies in control populations were compared. RESULTS: We identified four patients with de novo missense variants in SUPT16H and one patient with a de novo deletion including SUPT16H. These variants were not reported in the updated Genome Aggregation Database. When assayable, all protein products were predicted to be damaging. Symptoms included intellectual disability, autistic features, minor dysmorphic features and seizures. Anomalies of the CC were seen in all three patients with available brain imaging. CONCLUSION: Our findings implicate the gene SUPT16H in a novel disorder characterised by neurodevelopmental deficits and CC anomalies.


Subject(s)
Agenesis of Corpus Callosum/genetics , Cell Cycle Proteins/genetics , Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Adolescent , Agenesis of Corpus Callosum/physiopathology , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Child , Child, Preschool , Corpus Callosum/physiopathology , Exome/genetics , Female , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/physiopathology , Seizures/genetics , Seizures/physiopathology , Exome Sequencing
18.
J Neurosci ; 39(37): 7321-7331, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31270155

ABSTRACT

Sensorimotor deficits are prevalent in many neurodevelopmental disorders like autism, including one of its common genetic etiologies, a 600 kb reciprocal deletion/duplication at 16p11.2. We have previously shown that copy number variations of 16p11.2 impact regional brain volume, white matter integrity, and early sensory responses in auditory cortex. Here, we test the hypothesis that abnormal cortical neurophysiology is present when genes in the 16p11.2 region are haploinsufficient, and in humans that this in turn may account for behavioral deficits specific to deletion carriers. We examine sensorimotor cortical network activity in males and females with 16p11.2 deletions compared with both typically developing individuals, and those with duplications of 16p11.2, using magnetoencephalographic imaging during preparation of overt speech or hand movements in tasks designed to be easy for all participants. In deletion carriers, modulation of beta oscillations (12-30 Hz) were increased during both movement types over effector-specific regions of motor cortices compared with typically developing individuals or duplication carriers, with no task-related performance differences between cohorts, even when corrected for their own cognitive and sensorimotor deficits. Reduced left hemispheric language specialization was observed in deletion carriers but not in duplication carriers. Neural activity over sensorimotor cortices in deletion carriers was linearly related to clinical measures of speech and motor impairment. These findings link insufficient copy number repeats at 16p11.2 to excessive neural activity (e.g., increased beta oscillations) in motor cortical networks for speech and hand motor control. These results have significant implications for understanding the neural basis of autism and related neurodevelopmental disorders.SIGNIFICANCE STATEMENT The recurrent ∼600 kb deletion at 16p11.2 (BP4-BP5) is one of the most common genetic etiologies of ASD and, more generally, of neurodevelopmental disorders. Here, we use high-resolution magnetoencephalographic imaging (MEG-I) to define with millisecond precision the underlying neurophysiological signature of motor impairments for individuals with 16p11.2 deletions. We identify significant increases in beta (12-30 Hz) suppression in sensorimotor cortices related to performance during speech and hand movement tasks. These findings not only provide a neurophysiological phenotype for the clinical presentation of this genetic deletion, but also guide our understanding of how genetic variation encodes for neural oscillatory dynamics.


Subject(s)
Anticipation, Psychological/physiology , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Chromosome Disorders/genetics , Chromosome Disorders/physiopathology , Gene Deletion , Heterozygote , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Sensorimotor Cortex/physiopathology , Adolescent , Adult , Autistic Disorder/psychology , Child , Chromosome Deletion , Chromosome Disorders/psychology , Chromosomes, Human, Pair 16/genetics , Female , Humans , Intellectual Disability/psychology , Magnetoencephalography/methods , Male , Middle Aged
19.
Hum Mutat ; 41(11): 1999-2011, 2020 11.
Article in English | MEDLINE | ID: mdl-32906212

ABSTRACT

Clinical and genetic features of five unrelated patients with de novo pathogenic variants in the synaptic vesicle-associated membrane protein 2 (VAMP2) reveal common features of global developmental delay, autistic tendencies, behavioral disturbances, and a higher propensity to develop epilepsy. For one patient, a cognitively impaired adolescent with a de novo stop-gain VAMP2 mutation, we tested a potential treatment strategy, enhancing neurotransmission by prolonging action potentials with the aminopyridine family of potassium channel blockers, 4-aminopyridine and 3,4-diaminopyridine, in vitro and in vivo. Synaptic vesicle recycling and neurotransmission were assayed in neurons expressing three VAMP2 variants by live-cell imaging and electrophysiology. In cellular models, two variants decrease both the rate of exocytosis and the number of synaptic vesicles released from the recycling pool, compared with wild-type. Aminopyridine treatment increases the rate and extent of exocytosis and total synaptic charge transfer and desynchronizes GABA release. The clinical response of the patient to 2 years of off-label aminopyridine treatment includes improved emotional and behavioral regulation by parental report, and objective improvement in standardized cognitive measures. Aminopyridine treatment may extend to patients with pathogenic variants in VAMP2 and other genes influencing presynaptic function or GABAergic tone, and tested in vitro before treatment.


Subject(s)
4-Aminopyridine/pharmacology , Mutation/genetics , Vesicle-Associated Membrane Protein 2/genetics , Adult , Electrophysiology , Exocytosis/drug effects , Female , Humans , Male , Synaptic Transmission/drug effects , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism
20.
Neuroimage ; 217: 116868, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32360691

ABSTRACT

Corpus callosum dysgenesis (CCD) describes a collection of brain malformations in which the main fiber tract connecting the two hemispheres is either absent (complete CCD, or 'agenesis of the corpus callosum') or reduced in size (partial CCD). Humans with these neurodevelopmental disorders have a wide range of cognitive outcomes, including seemingly preserved features of interhemispheric communication in some cases. However, the structural substrates that could underlie this variability in outcome remain to be fully elucidated. Here, for the first time, we characterize the global brain connectivity of a mouse model of complete and partial CCD. We demonstrate features of structural brain connectivity that model those predicted in humans with CCD, including Probst bundles in complete CCD and heterotopic sigmoidal connections in partial CCD. Crucially, we also histologically validate the recently predicted ectopic sigmoid bundle present in humans with partial CCD, validating the utility of this mouse model for fine anatomical studies of this disorder. Taken together, this work describes a mouse model of altered structural connectivity in variable severity CCD and forms a foundation for future studies investigating the function and mechanisms of development of plastic tracts in developmental disorders of brain connectivity.


Subject(s)
Agenesis of Corpus Callosum/diagnostic imaging , Neural Pathways/diagnostic imaging , Animals , Connectome , Diffusion Tensor Imaging , Disease Models, Animal , Electroporation , Female , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Neurologic Mutants , Neuronal Plasticity , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL