Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nucleic Acids Res ; 51(17): 9356-9368, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37486777

ABSTRACT

RIG-I (retinoic acid inducible gene-I) can sense subtle differences between endogenous and viral RNA in the cytoplasm, triggering an anti-viral immune response through induction of type I interferons (IFN) and other inflammatory mediators. Multiple crystal and cryo-EM structures of RIG-I suggested a mechanism in which the C-terminal domain (CTD) is responsible for the recognition of viral RNA with a 5'-triphoshate modification, while the CARD domains serve as a trigger for downstream signaling, leading to the induction of type I IFN. However, to date contradicting conclusions have been reached around the role of ATP in the mechanism of the CARD domains ejection from RIG-I's autoinhibited state. Here we present an application of NMR spectroscopy to investigate changes induced by the binding of 5'-triphosphate and 5'-OH dsRNA, both in the presence and absence of nucleotides, to full length RIG-I with all its methionine residues selectively labeled (Met-[ϵ-13CH3]). With this approach we were able to identify residues on the CTD, helicase domain, and CARDs that served as probes to sense RNA-induced conformational changes in those respective regions. Our results were analyzed in the context of either agonistic or antagonistic RNAs, by and large supporting a mechanism proposed by the Pyle Lab in which CARD release is primarily dependent on the RNA binding event.


Subject(s)
Trans-Activators , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Interferon Type I/genetics , Protein Structure, Tertiary , RNA, Double-Stranded , RNA, Viral/genetics , RNA, Viral/metabolism , Signal Transduction , Trans-Activators/metabolism
2.
J Biol Chem ; 298(9): 102284, 2022 09.
Article in English | MEDLINE | ID: mdl-35868561

ABSTRACT

cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Cyclic GMP-Dependent Protein Kinase Type I , Cyclic GMP , Piperidines , Adenosine Triphosphate/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Humans , Piperidines/pharmacology , Piperidines/therapeutic use , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
3.
Nature ; 544(7650): 327-332, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28379944

ABSTRACT

The angiotensin II receptors AT1R and AT2R serve as key components of the renin-angiotensin-aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or ß-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.


Subject(s)
Models, Molecular , Receptor, Angiotensin, Type 2/chemistry , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II Type 2 Receptor Blockers/chemistry , Angiotensin II Type 2 Receptor Blockers/metabolism , Binding Sites/genetics , Crystallography, X-Ray , Drug Design , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation , Mutation , Protein Binding , Protein Conformation , Receptor, Angiotensin, Type 1/chemistry , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/genetics , Signal Transduction , Structure-Activity Relationship , Substrate Specificity/genetics , beta-Arrestins/metabolism
4.
Anal Chem ; 93(15): 6071-6079, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33819010

ABSTRACT

The primary goal of high-throughput screening (HTS) is to rapidly survey a broad collection of compounds, numbering from tens of thousands to millions of members, and identify those that modulate the activity of a therapeutic target of interest. For nearly two decades, mass spectrometry has been used as a label-free, direct-detection method for HTS and is widely acknowledged as being less susceptible to interferences than traditional optical techniques. Despite these advantages, the throughput of conventional MS-based platforms like RapidFire or parallel LC-MS, which typically acquire data at speeds of 6-30 s/sample, can still be limiting for large HTS campaigns. To overcome this bottleneck, the field has recently turned to chromatography-free approaches including MALDI-TOF-MS and acoustic droplet ejection-MS, both of which are capable of throughputs of 1 sample/second or faster. In keeping with these advances, we report here on our own characterization of an acoustic droplet ejection, open port interface (ADE-OPI)-MS system as a platform for HTS using the membrane-associated, lipid metabolizing enzyme diacylglycerol acyltransferase 2 (DGAT2) as a model system. We demonstrate for the first time that the platform is capable of ejecting droplets from phase-separated samples, allowing direct coupling of liquid-liquid extraction with OPI-MS analysis. By applying the platform to screen a 6400-member library, we further demonstrate that the ADE-OPI-MS assay is suitable for HTS and also performs comparably to LC-MS, but with an efficiency gain of >20-fold.


Subject(s)
Diacylglycerol O-Acyltransferase , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Acoustics , Chromatography, Liquid , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
Nature ; 526(7575): 672-7, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26416753

ABSTRACT

Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.


Subject(s)
Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA, Bacterial/chemistry , RNA, Bacterial/drug effects , Riboswitch/drug effects , Animals , Aptamers, Nucleotide/chemistry , Bacteria/cytology , Bacteria/drug effects , Bacteria/growth & development , Base Sequence , Crystallography, X-Ray , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Female , Flavin Mononucleotide/metabolism , Gene Expression Regulation, Bacterial/drug effects , Heat-Shock Proteins/genetics , Intramolecular Transferases/genetics , Ligands , Mice , Mice, Inbred DBA , Models, Molecular , Molecular Sequence Data , Pyrimidines/isolation & purification , Pyrimidines/therapeutic use , RNA, Bacterial/genetics , Reproducibility of Results , Riboflavin/biosynthesis , Riboswitch/genetics , Substrate Specificity
6.
PLoS Pathog ; 12(5): e1005585, 2016 05.
Article in English | MEDLINE | ID: mdl-27144276

ABSTRACT

Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro ß-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the ß-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore ß-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation.


Subject(s)
Bacterial Proteins/metabolism , Racemases and Epimerases/metabolism , Staphylococcus aureus/metabolism , Staphylococcus epidermidis/metabolism , Teichoic Acids/biosynthesis , Animals , Bacterial Proteins/chemistry , Biofilms/growth & development , Cell Wall/metabolism , Crystallography, X-Ray , Disease Models, Animal , Methicillin-Resistant Staphylococcus aureus , Mice , Microbial Sensitivity Tests , Microscopy, Fluorescence , Nuclear Magnetic Resonance, Biomolecular , Racemases and Epimerases/chemistry , Staphylococcal Infections/metabolism
7.
Anal Biochem ; 518: 9-15, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27815077

ABSTRACT

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created an urgent need for new therapeutic agents capable of combating this threat. We have previously reported on the discovery of novel inhibitors targeting enzymes involved in the biosynthesis of wall teichoic acid (WTA) and demonstrated that these agents can restore ß-lactam efficacy against MRSA. In those previous reports pathway engagement of inhibitors was demonstrated by reduction in WTA levels measured by polyacrylamide gel electrophoresis. To enable a more rigorous analysis of these inhibitors we sought to develop a quantitative method for measuring whole-cell reductions in WTA. Herein we describe a robust methodology for hydrolyzing polymeric WTA to the monomeric component ribitol-N-acetylglucosamine coupled with measurement by LC-MS/MS. Critical elements of the protocol were found to include the time and temperature of hydrofluoric acid-mediated hydrolysis of polymeric WTA and optimization of these parameters is fully described. Most significantly, the assay enabled accurate and reproducible measurement of depletion EC50s for tunicamycin and representatives from the novel class of TarO inhibitors, the tarocins. The method described can readily be adapted to quantifying levels of WTA in tissue homogenates from a murine model of infection, highlighting the applicability for both in vitro and in vivo characterizations.


Subject(s)
Mass Spectrometry/methods , Methicillin-Resistant Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Chromatography, Liquid/methods , Methicillin-Resistant Staphylococcus aureus/chemistry , Teichoic Acids/chemistry , Tunicamycin/pharmacology
8.
Bioorg Med Chem Lett ; 26(19): 4743-4747, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27575474

ABSTRACT

A series of benzimidazole analogs have been synthesized to improve the profile of the previous lead compounds tarocin B and 1. The syntheses, structure-activity relationships, and selected biochemical data of these analogs are described. The optimization efforts allowed the identification of 21, a fluoro-substituted benzimidazole, exhibiting potent TarO inhibitory activity and typical profile for a wall teichoic acid (WTA) biosynthesis inhibitor. Compound 21 displayed a potent synergistic and bactericidal effect in combination with imipenem against diverse methicillin-resistant Staphylococci.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzimidazoles/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Teichoic Acids/antagonists & inhibitors , Animals , Anti-Bacterial Agents/chemistry , Benzimidazoles/chemistry , Microbial Sensitivity Tests , Rats , Structure-Activity Relationship , Teichoic Acids/biosynthesis
9.
J Biol Chem ; 289(26): 18008-21, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24821719

ABSTRACT

The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a ß-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Neutralizing/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacterial Toxins/chemistry , Bacterial Toxins/immunology , Clostridioides difficile/immunology , Epitopes/immunology , Amino Acid Sequence , Antibodies, Bacterial/chemistry , Antibodies, Monoclonal , Antibodies, Neutralizing/chemistry , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Binding Sites , Broadly Neutralizing Antibodies , Clostridioides difficile/chemistry , Clostridioides difficile/genetics , Crystallography, X-Ray , Epitope Mapping , Epitopes/chemistry , Epitopes/genetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary
10.
Antimicrob Agents Chemother ; 59(2): 1052-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451052

ABSTRACT

Clostridium difficile infections (CDIs) are the leading cause of hospital-acquired infectious diarrhea and primarily involve two exotoxins, TcdA and TcdB. Actoxumab and bezlotoxumab are human monoclonal antibodies that neutralize the cytotoxic/cytopathic effects of TcdA and TcdB, respectively. In a phase II clinical study, the actoxumab-bezlotoxumab combination reduced the rate of CDI recurrence in patients who were also treated with standard-of-care antibiotics. However, it is not known whether the antibody combination will be effective against a broad range of C. difficile strains. As a first step toward addressing this, we tested the ability of actoxumab and bezlotoxumab to neutralize the activities of toxins from a number of clinically relevant and geographically diverse strains of C. difficile. Neutralization potencies, as measured in a cell growth/survival assay with purified toxins from various C. difficile strains, correlated well with antibody/toxin binding affinities. Actoxumab and bezlotoxumab neutralized toxins from culture supernatants of all clinical isolates tested, including multiple isolates of the BI/NAP1/027 and BK/NAP7/078 strains, at antibody concentrations well below plasma levels observed in humans. We compared the bezlotoxumab epitopes in the TcdB receptor binding domain across known TcdB sequences and found that key substitutions within the bezlotoxumab epitopes correlated with the relative differences in potencies of bezlotoxumab against TcdB of some strains, including ribotypes 027 and 078. Combined with in vitro neutralization data, epitope modeling will enhance our ability to predict the coverage of new and emerging strains by actoxumab-bezlotoxumab in the clinic.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Clostridioides difficile/drug effects , Bacterial Proteins/genetics , Cell Line , Clostridioides difficile/immunology , Clostridioides difficile/pathogenicity , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Epitopes/immunology , Female , Humans , Male
11.
Sci Transl Med ; 15(684): eabn2038, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812345

ABSTRACT

Antiretroviral therapy inhibits HIV-1 replication but is not curative due to establishment of a persistent reservoir after virus integration into the host genome. Reservoir reduction is therefore an important HIV-1 cure strategy. Some HIV-1 nonnucleoside reverse transcriptase inhibitors induce HIV-1 selective cytotoxicity in vitro but require concentrations far exceeding approved dosages. Focusing on this secondary activity, we found bifunctional compounds with HIV-1-infected cell kill potency at clinically achievable concentrations. These targeted activator of cell kill (TACK) molecules bind the reverse transcriptase-p66 domain of monomeric Gag-Pol and act as allosteric modulators to accelerate dimerization, resulting in HIV-1+ cell death through premature intracellular viral protease activation. TACK molecules retain potent antiviral activity and selectively eliminate infected CD4+ T cells isolated from people living with HIV-1, supporting an immune-independent clearance strategy.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , Antiviral Agents/therapeutic use , Apoptosis , Cell Death , CD4-Positive T-Lymphocytes , Virus Replication
12.
SLAS Discov ; 27(1): 20-28, 2022 01.
Article in English | MEDLINE | ID: mdl-35058172

ABSTRACT

Screening campaigns, especially those aimed at modulating enzyme activity, often rely on measuring substrate→product conversions. Unfortunately, the presence of endogenous substrates and/or products can limit one's ability to measure conversions. As well, coupled detection systems, often used to facilitate optical readouts, are subject to interference. Stable isotope labeled substrates can overcome background contamination and yield a direct readout of enzyme activity. Not only can isotope kinetic assays enable early screening, but they can also be used to follow hit progression in translational (pre)clinical studies. Herein, we consider a case study surrounding lipid biology to exemplify how metabolic flux analyses can connect stages of drug development, caveats are highlighted to ensure reliable data interpretations. For example, when measuring enzyme activity in early biochemical screening it may be enough to quantify the formation of a labeled product. In contrast, cell-based and in vivo studies must account for variable exposure to a labeled substrate (or precursor) which occurs via tracer dilution and/or isotopic exchange. Strategies are discussed to correct for these complications. We believe that measures of metabolic flux can help connect structure-activity relationships with pharmacodynamic mechanisms of action and determine whether mechanistically differentiated biophysical interactions lead to physiologically relevant outcomes. Adoption of this logic may allow research programs to (i) build a critical bridge between primary screening and (pre)clinical development, (ii) elucidate biology in parallel with screening and (iii) suggest a strategy aimed at in vivo biomarker development.


Subject(s)
Isotopes , Isotope Labeling
13.
J Med Chem ; 65(24): 16234-16251, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36475645

ABSTRACT

With the emergence and rapid spreading of NDM-1 and existence of clinically relevant VIM-1 and IMP-1, discovery of pan inhibitors targeting metallo-beta-lactamases (MBLs) became critical in our battle against bacterial infection. Concurrent with our fragment and high-throughput screenings, we performed a knowledge-based search of known metallo-beta-lactamase inhibitors (MBLIs) to identify starting points for early engagement of medicinal chemistry. A class of compounds exemplified by 11, discovered earlier as B. fragilis metallo-beta-lactamase inhibitors, was selected for in silico virtual screening. From these efforts, compound 12 was identified with activity against NDM-1 only. Initial exploration on metal binding design followed by structure-guided optimization led to the discovery of a series of compounds represented by 23 with a pan MBL inhibition profile. In in vivo studies, compound 23 in combination with imipenem (IPM) robustly lowered the bacterial burden in a murine infection model and became the lead for the invention of MBLI clinical candidates.


Subject(s)
Bacterial Infections , beta-Lactamase Inhibitors , Animals , Mice , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , beta-Lactamase Inhibitors/chemistry , Imipenem/pharmacology , Imipenem/therapeutic use , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
14.
Biochemistry ; 50(37): 7964-76, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21793567

ABSTRACT

Kinases catalyze the transfer of γ-phosphate from ATP to substrate protein residues triggering signaling pathways responsible for a plethora of cellular events. Isolation and production of homogeneous preparations of kinases in their fully active forms is important for accurate in vitro measurements of activity, stability, and ligand binding properties of these proteins. Previous studies have shown that MEK1 can be produced in its active phosphorylated form by coexpression with RAF1 in insect cells. In this study, using activated MEK1 produced by in vitro activation by RAF1 (pMEK1(in vitro)), we demonstrate that the simultaneous expression of RAF1 for production of activated MEK1 does not result in stoichiometric phosphorylation of MEK1. The pMEK1(in vitro) showed higher specific activity toward ERK2 protein substrate compared to the pMEK1 that was activated via coexpression with RAF1 (pMEK1(in situ)). The two pMEK1 preparations showed quantitative differences in the phosphorylation of T-loop residue serine 222 by Western blotting and mass spectrometry. Finally, pMEK1(in vitro) showed marked differences in the ligand binding properties compared to pMEK1(in situ). Contrary to previous findings, pMEK1(in vitro) bound allosteric inhibitors U0126 and PD0325901 with a significantly lower affinity than pMEK1(in situ) as well as its unphosphorylated counterpart (npMEK1) as demonstrated by thermal-shift, AS-MS, and calorimetric studies. The differences in inhibitor binding affinity provide direct evidence that unphosphorylated and RAF1-phosphorylated MEK1 form distinct inhibitor sites.


Subject(s)
Benzamides/metabolism , Butadienes/metabolism , Diphenylamine/analogs & derivatives , Mitogen-Activated Protein Kinase 1/metabolism , Nitriles/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Benzamides/pharmacology , Butadienes/pharmacology , Cell Line , Diphenylamine/metabolism , Diphenylamine/pharmacology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Insecta , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Nitriles/pharmacology , Protein Binding/drug effects , Protein Binding/physiology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology
15.
Anal Biochem ; 418(1): 10-8, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21726521

ABSTRACT

Affinity characterization by mass spectrometry (AC-MS) is a novel LC-MS methodology for quantitative determination of small molecule ligand binding to macromolecules. Its most distinguishing feature is the direct determination of all three concentration terms of the equilibrium binding equation, i.e., (M), (L), and (ML), which denote the macromolecule, ligand, and the corresponding complex, respectively. Although it is possible to obtain the dissociation constant from a single mixing experiment, saturation analyses are still valuable for assessing the overall binding phenomenon based on an established formalism. In addition to providing the prerequisite dissociation constant and binding stoichiometry, the technique also provides valuable information about the actual solubility of both macromolecule and ligand upon dilution and mixing in binding buffers. The dissociation constants and binding mode for interactions of DNA primase and thymidylate synthetase (TS) with high and low affinity small molecule ligands were obtained using the AC-MS method. The data were consistent with the expected affinity of TS for these ligands based on dissociation constants determined by alternative thermal-denaturation techniques: TdF or TdCD, and also consistent enzyme inhibition constants reported in the literature. The validity of AC-MS was likewise extended to a larger set of soluble protein-ligand systems. It was established as a valuable resource for counter screen and structure-activity relationship studies in drug discovery, especially when other classical techniques could only provide ambiguous results.


Subject(s)
Mass Spectrometry/methods , Proteins/chemistry , Binding Sites , DNA Primase/chemistry , DNA Primase/metabolism , Kinetics , Ligands , Protein Denaturation , Proteins/metabolism , Quinazolines/chemistry , Quinazolines/metabolism , Solutions , Structure-Activity Relationship , Temperature , Thiophenes/chemistry , Thiophenes/metabolism , Thymidylate Synthase/chemistry , Thymidylate Synthase/metabolism
16.
J Ayurveda Integr Med ; 12(2): 340-345, 2021.
Article in English | MEDLINE | ID: mdl-34016498

ABSTRACT

BACKGROUND: Over two billion people around the world suffer from anemia. Majority of populations are using dietary supplements and herbal medicines for the management of the anemic conditions. Many polyherbal formulations such as RaktavardhakKadha (RK), are available in the Indian market as a nutritional supplement and herbal-based medicine for anemia. OBJECTIVES: The present study is aimed at investigating antianemic potential of polyherbal formulation, RK, against phenylhydrazine-induced anemia in rats. MATERIALS AND METHODS: RK was subjected to preliminary phytochemical analysis and iron estimation. Anemia was induced by phenylhydrazine administration (40 mg/kg, i.p.) for 2 consecutive days. Antianemic activity of RK was investigated at the dose of 1.8 ml/kg, twice daily for 12 days by estimating blood parameters and pathological changes in liver, heart, spleen and bone marrow. RESULTS: RK was found to contain saponins, steroids, flavonoids, tannins and phenolic compounds. Iron content was found to be 5 mg/100 ml in RK. Anemia induction by phenylhydrazine injections to rats caused significant decrease in red blood cells (RBCs), hemoglobin and hematocrit. These decreased levels of RBCs, hemoglobin and hematocrit in blood was significantly improved by the treatment with RK. Furthermore, RK restored pathological changes in liver, heart, spleen and bone marrow tissues near to normal. CONCLUSION: This study suggests antianemic activity of RK, which can be attributed to its iron content and ability to prevent hemolysis.

17.
Biochemistry ; 49(38): 8350-8, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20718440

ABSTRACT

Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy.


Subject(s)
Benzimidazoles/pharmacology , Kinesins/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Antineoplastic Agents/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzamides/metabolism , Benzimidazoles/antagonists & inhibitors , Binding Sites , Circular Dichroism , Humans , Kinesins/antagonists & inhibitors , Kinesins/chemistry , Mass Spectrometry , Nucleotides/antagonists & inhibitors , Nucleotides/chemistry , Protein Structure, Tertiary , Quinazolines/metabolism
18.
Arch Biochem Biophys ; 503(2): 191-201, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20699085

ABSTRACT

Aurora B kinase plays a critical role in regulating mitotic progression, and its dysregulation has been linked to tumorigenesis. The structure of the kinase domain of human Aurora B and the complementary information of binding thermodynamics of known Aurora inhibitors is lacking. Towards that effort, we sought to identify a human Aurora B construct that would be amenable for large-scale protein production for biophysical and structural studies. Although the designed AurB(69-333) construct expressed at high levels in Escherichia coli, the purified protein was largely unstable and prone to aggregation. We employed thermal-shift assay for high-throughput screening of 192 conditions to identify optimal pH and salt conditions that increased the stability and minimized aggregation of AurB(69-333). Direct ligand binding analyses using temperature-dependent circular dichroism (TdCD) and TR-FRET-based Lanthascreen™ binding assay showed that the purified protein was folded and functional. The affinity rank-order obtained using TdCD and Lanthascreen™ binding assay correlated with enzymatic IC50 values measured using full-length Aurora B protein for all the inhibitors tested except for AZD1152. The direct binding results support the hypothesis that the purified human AurB(69-333) fragment is a good surrogate for its full-length counterpart for biophysical and structural analyses.


Subject(s)
Protein Serine-Threonine Kinases/isolation & purification , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary/genetics , Amino Acid Sequence , Aurora Kinase B , Aurora Kinases , Circular Dichroism , Cloning, Molecular , Enzyme Stability , Escherichia coli/metabolism , Fluorescence Resonance Energy Transfer , Humans , Inhibitory Concentration 50 , Mass Spectrometry , Molecular Sequence Data , Molecular Weight , Protein Folding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Thermodynamics
19.
Protein Expr Purif ; 70(1): 13-22, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19836452

ABSTRACT

AMP-activated protein kinase (AMPK) is considered an important target for treatment of type II diabetes and the metabolic syndrome. The muscle-specific isoform of the regulatory gamma-subunit, gamma 3, within the context of AMPK alpha 2 beta 2 gamma 3 complex, is involved in glucose and fat metabolism in skeletal muscle. In an effort to identify gamma 3-specific activators of AMPK, we have produced truncated human recombinant AMPK alpha 2 beta 2 gamma 3 (hu alpha 2 beta 2 gamma 3(trunc)) for biochemical characterization. Infection of insect cells with three baculoviral stocks encoding the individual subunits resulted in soluble expression of a stable hu alpha 2 beta 2 gamma 3(trunc) heterotrimeric complex. Co-expression of the three subunits was essential for solubility since the individual protein components, when expressed separately, were almost completely insoluble. The hu alpha 2 beta 2 gamma 3(trunc) heterotrimer was purified to apparent homogeneity from baculovirus-infected insect cells in a 1:1:1 stoichiometric complex. The hu alpha 2 beta 2 gamma 3(trunc) heterotrimer had significant circular dichroism signal that was lost as a function of temperature, implying that the purified protein was folded. The hu alpha 2 beta 2 gamma 3(trunc) complex was capable of binding AMP and ATP, although the heterotrimer showed preference for AMP, in particular, as seen by thermal denaturation circular dichroism analyses. Further experiments showed that the truncated complex bound ZMP (AICAR-monophosphate) albeit with much lower affinity than AMP. To investigate whether there were isoform-specific differences in the nucleotide binding affinities, a well-characterized truncated mammalian alpha 1 beta 2 gamma 1 (m alpha 1 beta 2 gamma 1(trunc)) equivalent of hu alpha 2 beta 2 gamma 3(trunc) was also purified. The gamma 1 and gamma 3 isoforms showed comparable nucleotide binding affinities and solution behavior properties.


Subject(s)
AMP-Activated Protein Kinases/isolation & purification , Baculoviridae/genetics , AMP-Activated Protein Kinases/chemistry , Amino Acid Sequence , Animals , Baculoviridae/metabolism , Binding Sites , Cell Line , Humans , Isoenzymes/chemistry , Isoenzymes/isolation & purification , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Spodoptera/cytology
20.
Metabolites ; 10(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233825

ABSTRACT

Stable isotope tracers can be used to quantify the activity of metabolic pathways. Specifically, 2H-water is quite versatile, and its incorporation into various products can enable measurements of carbohydrate, lipid, protein and nucleic acid kinetics. However, since there are limits on how much 2H-water can be administered and since some metabolic processes may be slow, it is possible that one may be challenged with measuring small changes in isotopic enrichment. We demonstrate an advantage of the isotope fractionation that occurs during gas chromatography, namely, setting tightly bounded integration regions yields a powerful approach for determining isotope ratios. We determined how the degree of isotope fractionation, chromatographic peak width and mass spectrometer dwell time can increase the apparent isotope labeling. Relatively simple changes in the logic surrounding data acquisition and processing can enhance gas chromatography-mass spectrometry measures of low levels of 2H-labeling, this is especially useful when asymmetrical peaks are recorded at low signal:background. Although we have largely focused attention on alanine (which is of interest in studies of protein synthesis), it should be possible to extend the concepts to other analytes and/or hardware configurations.

SELECTION OF CITATIONS
SEARCH DETAIL