Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nature ; 563(7731): 421-425, 2018 11.
Article in English | MEDLINE | ID: mdl-30405241

ABSTRACT

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Subject(s)
Oxygen/metabolism , Photosynthesis , Water/chemistry , Water/metabolism , Calcium/metabolism , Crystallography, X-Ray , Cyanobacteria/chemistry , Lasers , Manganese/metabolism , Models, Molecular , Oxidation-Reduction , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Plastoquinone/metabolism
2.
Photosynth Res ; 156(3): 279-307, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36826741

ABSTRACT

Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.


Subject(s)
Photosystem II Protein Complex , Solar Energy , Photosystem II Protein Complex/metabolism , Photosynthesis , Oxidation-Reduction , Water/metabolism , Oxygen/metabolism
3.
Proc Natl Acad Sci U S A ; 117(47): 29629-29636, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33168746

ABSTRACT

The unicellular green alga Chlamydomonas reinhardtii is capable of photosynthetic H2 production. H2 evolution occurs under anaerobic conditions and is difficult to sustain due to 1) competition between [FeFe]-hydrogenase (H2ase), the key enzyme responsible for H2 metabolism in algae, and the Calvin-Benson-Bassham (CBB) cycle for photosynthetic reductants and 2) inactivation of H2ase by O2 coevolved in photosynthesis. Recently, we achieved sustainable H2 photoproduction by shifting algae from continuous illumination to a train of short (1 s) light pulses, interrupted by longer (9 s) dark periods. This illumination regime prevents activation of the CBB cycle and redirects photosynthetic electrons to H2ase. Employing membrane-inlet mass spectrometry and [Formula: see text], we now present clear evidence that efficient H2 photoproduction in pulse-illuminated algae depends primarily on direct water biophotolysis, where water oxidation at the donor side of photosystem II (PSII) provides electrons for the reduction of protons by H2ase downstream of photosystem I. This occurs exclusively in the absence of CO2 fixation, while with the activation of the CBB cycle by longer (8 s) light pulses the H2 photoproduction ceases and instead a slow overall H2 uptake is observed. We also demonstrate that the loss of PSII activity in DCMU-treated algae or in PSII-deficient mutant cells can be partly compensated for by the indirect (PSII-independent) H2 photoproduction pathway, but only for a short (<1 h) period. Thus, PSII activity is indispensable for a sustained process, where it is responsible for more than 92% of the final H2 yield.


Subject(s)
Chlorophyta/metabolism , Hydrogen/metabolism , Nutrients/metabolism , Photosystem II Protein Complex/metabolism , Water/metabolism , Chlamydomonas reinhardtii/metabolism , Chlorophyll/metabolism , Electron Transport/physiology , Electrons , Hydrogenase/metabolism , Oxygen/metabolism , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Sulfur/metabolism
4.
Proc Natl Acad Sci U S A ; 117(1): 141-145, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31848244

ABSTRACT

Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as "low oxidation (LO)" and "high oxidation (HO)" models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster's oxidation states.


Subject(s)
Manganese/metabolism , Oxygen/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Cyanobacteria , Electron Spin Resonance Spectroscopy/methods , Lasers , Light , Manganese Compounds , Models, Chemical , Oxidation-Reduction , Oxides , Photosystem II Protein Complex/chemistry , Thermosynechococcus , Water/chemistry
5.
Environ Sci Technol ; 56(13): 9683-9692, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35696645

ABSTRACT

The regulation of photosynthetic machinery with a nonoxidative approach is a powerful but challenging strategy for the selective inhibition of bloom-forming cyanobacteria. Acetylacetone (AA) was recently found to be a target-selective cyanocide for Microcystis aeruginosa, but the cause and effect in the studied system are still unclear. By recording of the chemical fingerprints of the cells at two treatment intervals (12 and 72 h with 0.1 mM AA) with omics assays, the molecular mechanism of AA in inactivating Microcystis aeruginosa was elucidated. The results clearly reveal the effect of AA on ferredoxin and the consequent effects on the physiological and biochemical processes of Microcystis aeruginosa. In addition to its role as an electron acceptor of photosystem I, ferredoxin plays pivotal roles in the assimilation of nitrogen in cyanobacterial cells. The effect of AA on ferredoxin and on nonheme iron of photosystem II first cut off the photosynthetic electron transfer flow and then interrupted the synthesis of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which ultimately might affect carbon fixation and nitrogen assimilation metabolisms. The results here provide missing pieces in the current knowledge on the selective inhibition of cyanobacteria, which should shed light on the better control of harmful blooms.


Subject(s)
Cyanobacteria , Microcystis , Carbon , Electrons , Ferredoxins , Nitrogen , Pentanones
6.
Photosynth Res ; 149(3): 259-264, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34236567

ABSTRACT

After a brief background on Otto Heinrich Warburg (1883-1970), and some of his selected research, we provide highlights, in English, of three of his papers in the 1940s-unknown to many as they were not originally published in English. They are: two brief reports on Photosynthesis, with Wilhelm Lüttgens, originally published in German, in 1944: 'Experiment on assimilation of carbonic acid'; and 'Further experiments on carbon dioxide assimilation'. This is followed by a regular paper, originally published in Russian, in 1946: 'The photochemical reduction of quinone in green granules'. Since the 1944 reports discussed here are very short, their translations are included in the Appendix, but that of the 1946 paper is provided in the Supplementary Material. In all three reports, Warburg provides the first evidence for and elaborates on light-driven water oxidation coupled to reduction of added benzoquinone. These largely overlooked studies of Warburg are in stark contrast to Warburg's well-known error in assigning the origin of the photosynthetically formed dioxygen to carbonate.


Subject(s)
Benzoquinones/metabolism , Carbon Dioxide/metabolism , Oxidation-Reduction , Photosynthesis/physiology , Research Report/history , Water/metabolism , Germany , History, 19th Century , History, 20th Century , Humans , Male , Russia
7.
Environ Sci Technol ; 55(20): 14173-14184, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34590827

ABSTRACT

Selective inhibition of photosynthesis is a fundamental strategy to solve the global challenge caused by harmful cyanobacterial blooms. However, there is a lack of specificity of the currently used cyanocides, because most of them act on cyanobacteria by generating nontargeted oxidative stress. Here, for the first time, we find that the simplest ß-diketone, acetylacetone, is a promising specific cyanocide, which acts on Microcystis aeruginosa through targeted binding on bound iron species in the photosynthetic electron transport chain, rather than by oxidizing the components of the photosynthetic apparatus. The targeted binding approach outperforms the general oxidation mechanism in terms of specificity and eco-safety. Given the essential role of photosynthesis in both natural and artificial systems, this finding not only provides a unique solution for the selective control of cyanobacteria but also sheds new light on the ways to modulate photosynthesis.


Subject(s)
Cyanobacteria , Microcystis , Harmful Algal Bloom , Iron , Oxidation-Reduction , Photosynthesis
8.
Biochemistry ; 59(26): 2442-2449, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32574489

ABSTRACT

The effect of bicarbonate (HCO3-) on photosystem II (PSII) activity was discovered in the 1950s, but only recently have its molecular mechanisms begun to be clarified. Two chemical mechanisms have been proposed. One is for the electron-donor side, in which mobile HCO3- enhances and possibly regulates water oxidation by acting as proton acceptor, after which it dissociates into CO2 and H2O. The other is for the electron-acceptor side, in which (i) reduction of the QA quinone leads to the release of HCO3- from its binding site on the non-heme iron and (ii) the Em potential of the QA/QA•- couple increases when HCO3- dissociates. This suggested a protective/regulatory role of HCO3- as it is known that increasing the Em of QA decreases the extent of back-reaction-associated photodamage. Here we demonstrate, using plant thylakoids, that time-resolved membrane-inlet mass spectrometry together with 13C isotope labeling of HCO3- allows donor- and acceptor-side formation of CO2 by PSII to be demonstrated and distinguished, which opens the door for future studies of the importance of both mechanisms under in vivo conditions.


Subject(s)
Bicarbonates/metabolism , Carbon Dioxide/metabolism , Photosystem II Protein Complex/metabolism , Spinacia oleracea/metabolism , Thylakoids/metabolism , Electron Transport , Oxidation-Reduction
9.
Physiol Plant ; 166(1): 165-180, 2019 May.
Article in English | MEDLINE | ID: mdl-30693529

ABSTRACT

High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water-oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane-inlet mass spectrometry and O2 -polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these 'PSII birth defects' in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de-etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2 -polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB -inhibitor binding, and thermoluminescence studies indicate that the decline of the high-light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA - → QB during de-etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer-range energy transfer.


Subject(s)
Chloroplasts/metabolism , Photosystem II Protein Complex/metabolism , Chloroplasts/ultrastructure , Mass Spectrometry , Microscopy, Electron , Organelle Biogenesis , Photosynthesis/physiology , Photosystem II Protein Complex/ultrastructure
10.
Methods Mol Biol ; 2790: 133-148, 2024.
Article in English | MEDLINE | ID: mdl-38649570

ABSTRACT

This chapter compares two different techniques for monitoring photosynthetic O2 production; the wide-spread Clark-type O2 electrode and the more sophisticated membrane inlet mass spectrometry (MIMS) technique. We describe how a simple membrane inlet for MIMS can be made out of a commercial Clark-type cell and outline the advantages and drawbacks of the two techniques to guide researchers in deciding which method to use. Protocols and examples are given for measuring O2 evolution rates and for determining the number of chlorophyll molecules per active photosystem II reaction center.


Subject(s)
Mass Spectrometry , Oxygen , Photosynthesis , Photosystem II Protein Complex , Oxygen/metabolism , Mass Spectrometry/methods , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Electrodes
11.
Nat Commun ; 14(1): 3210, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270605

ABSTRACT

Green organisms evolve oxygen (O2) via photosynthesis and consume it by respiration. Generally, net O2 consumption only becomes dominant when photosynthesis is suppressed at night. Here, we show that green thylakoid membranes of Scots pine (Pinus sylvestris L) and Norway spruce (Picea abies) needles display strong O2 consumption even in the presence of light when extremely low temperatures coincide with high solar irradiation during early spring (ES). By employing different electron transport chain inhibitors, we show that this unusual light-induced O2 consumption occurs around photosystem (PS) I and correlates with higher abundance of flavodiiron (Flv) A protein in ES thylakoids. With P700 absorption changes, we demonstrate that electron scavenging from the acceptor-side of PSI via O2 photoreduction is a major alternative pathway in ES. This photoprotection mechanism in vascular plants indicates that conifers have developed an adaptative evolution trajectory for growing in harsh environments.


Subject(s)
Pinus sylvestris , Tracheophyta , Thylakoids/metabolism , Photosystem I Protein Complex/metabolism , Tracheophyta/metabolism , Photosynthesis , Electron Transport , Pinus sylvestris/metabolism , Oxygen/metabolism
12.
Biochim Biophys Acta Bioenerg ; 1863(1): 148507, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34728155

ABSTRACT

Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron­sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.


Subject(s)
Photosystem II Protein Complex , Electron Transport , Synechocystis
13.
Oncotarget ; 8(40): 66960-66974, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28978009

ABSTRACT

Aggressive cancers are characterized by hypoxia, which is a key driver of tumor development and treatment resistance. Proteins specifically expressed in the hypoxic tumor microenvironment thus represent interesting candidates for targeted drug delivery strategies. Carbonic anhydrase (CAIX) has been identified as an attractive treatment target as it is highly hypoxia specific and expressed at the cell-surface to promote cancer cell aggressiveness. Here, we find that cancer cell internalization of CAIX is negatively regulated by post-translational modification with chondroitin or heparan sulfate glycosaminoglycan chains. We show that perturbed glycosaminoglycan modification results in increased CAIX endocytosis. We hypothesized that perturbation of CAIX glycosaminoglycan conjugation may provide opportunities for enhanced drug delivery to hypoxic tumor cells. In support of this concept, pharmacological inhibition of glycosaminoglycan biosynthesis with xylosides significantly potentiated the internalization and cytotoxic activity of an antibody-drug conjugate (ADC) targeted at CAIX. Moreover, cells expressing glycosaminoglycan-deficient CAIX were significantly more sensitive to ADC treatment as compared with cells expressing wild-type CAIX. We find that inhibition of CAIX endocytosis is associated with an increased localization of glycosaminoglycan-conjugated CAIX in membrane lipid raft domains stabilized by caveolin-1 clusters. The association of CAIX with caveolin-1 was partially attenuated by acidosis, i.e. another important feature of malignant tumors. Accordingly, we found increased internalization of CAIX at acidic conditions. These findings provide first evidence that intracellular drug delivery at pathophysiological conditions of malignant tumors can be attenuated by tumor antigen glycosaminoglycan modification, which is of conceptual importance in the future development of targeted cancer treatments.

SELECTION OF CITATIONS
SEARCH DETAIL