Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Bioorg Med Chem ; 28(23): 115791, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33059303

ABSTRACT

GlaxoSmithKline and Astex Pharmaceuticals recently disclosed the discovery of the potent H-PGDS inhibitor GSK2894631A 1a (IC50 = 9.9 nM) as part of a fragment-based drug discovery collaboration with Astex Pharmaceuticals. This molecule exhibited good murine pharmacokinetics, allowing it to be utilized to explore H-PGDS pharmacology in vivo. Yet, with prolonged dosing at higher concentrations, 1a induced CNS toxicity. Looking to attenuate brain penetration in this series, aza-quinolines, were prepared with the intent of increasing polar surface area. Nitrogen substitutions at the 6- and 8-positions of the quinoline were discovered to be tolerated by the enzyme. Subsequent structure activity studies in these aza-quinoline scaffolds led to the identification of 1,8-naphthyridine 1y (IC50 = 9.4 nM) as a potent peripherally restricted H-PGDS inhibitor. Compound 1y is efficacious in four in vivo inflammatory models and exhibits no CNS toxicity.


Subject(s)
Aza Compounds/chemistry , Enzyme Inhibitors/chemistry , Quinolines/chemistry , Animals , Binding Sites , Brain/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Stability , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/metabolism , Kinetics , Male , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Rats , Structure-Activity Relationship
2.
Bioorg Med Chem ; 27(8): 1456-1478, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30858025

ABSTRACT

With the goal of discovering more selective anti-inflammatory drugs, than COX inhibitors, to attenuate prostaglandin signaling, a fragment-based screen of hematopoietic prostaglandin D synthase was performed. The 76 crystallographic hits were sorted into similar groups, with the 3-cyano-quinoline 1a (FP IC50 = 220,000 nM, LE = 0.43) being a potent member of the 6,6-fused heterocyclic cluster. Employing SAR insights gained from structural comparisons of other H-PGDS fragment binding mode clusters, the initial hit 1a was converted into the 70-fold more potent quinoline 1d (IC50 = 3,100 nM, LE = 0.49). A systematic substitution of the amine moiety of 1d, utilizing structural information and array chemistry, with modifications to improve inhibitor stability, resulted in the identification of the 300-fold more active H-PGDS inhibitor tool compound 1bv (IC50 = 9.9 nM, LE = 0.42). This selective inhibitor exhibited good murine pharmacokinetics, dose-dependently attenuated PGD2 production in a mast cell degranulation assay and should be suitable to further explore H-PGDS biology.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Lipocalins/antagonists & inhibitors , Quinolines/chemistry , Quinolines/pharmacology , Animals , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Humans , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/metabolism , Lipocalins/chemistry , Lipocalins/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Quinolines/pharmacokinetics
3.
Arch Biochem Biophys ; 564: 156-63, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25250980

ABSTRACT

hCD157 catalyzes the hydrolysis of nicotinamide riboside (NR) and nicotinic acid riboside (NAR). The release of nicotinamide or nicotinic acid from NR or NAR was confirmed by spectrophotometric, HPLC and NMR analyses. hCD157 is inactivated by a mechanism-based inhibitor, 2'-deoxy-2'-fluoro-nicotinamide arabinoside (fNR). Modification of the enzyme during the catalytic cycle by NR, NAR, or fNR increased the intrinsic protein fluorescence by approximately 50%. Pre-steady state and steady state data were used to derive a minimal kinetic scheme for the hydrolysis of NR. After initial complex formation a reversible step (360 and 30s(-1)) is followed by a slow irreversible step (0.1s(-1)) that defined the rate limiting step, or kcat. The calculated KMapp value for NR in the hydrolytic reaction is 6nM. The values of the kinetic constants suggest that one biological function of cell-surface hCD157 is to bind and slowly hydrolyze NR, possibly converting it to a ligand-activated receptor. Differences in substrate preference between hCD157 and hCD38 were rationalized through a comparison of the crystal structures of the two proteins. This comparison identified several residues in hCD157 (F108 and F173) that can potentially hinder the binding of dinucleotide substrates (NAD+).


Subject(s)
ADP-ribosyl Cyclase/chemistry , Antigens, CD/chemistry , Niacinamide/analogs & derivatives , Ribonucleosides/chemistry , ADP-ribosyl Cyclase/genetics , ADP-ribosyl Cyclase/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , CHO Cells , Catalysis , Cricetinae , Cricetulus , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Hydrolysis , Kinetics , Niacinamide/chemistry , Niacinamide/genetics , Niacinamide/metabolism , Nuclear Magnetic Resonance, Biomolecular , Pyridinium Compounds , Ribonucleosides/genetics , Ribonucleosides/metabolism
4.
J Med Chem ; 67(3): 2049-2065, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284310

ABSTRACT

Human genetic evidence shows that PDE3B is associated with metabolic and dyslipidemia phenotypes. A number of PDE3 family selective inhibitors have been approved by the FDA for various indications; however, given the undesirable proarrhythmic effects in the heart, selectivity for PDE3B inhibition over closely related family members (such as PDE3A; 48% identity) is a critical consideration for development of PDE3B therapeutics. Selectivity for PDE3B over PDE3A may be achieved in a variety of ways, including properties intrinsic to the compound or tissue-selective targeting. The high (>95%) active site homology between PDE3A and B represents a massive obstacle for obtaining selectivity at the active site; however, utilization of libraries with high molecular diversity in high throughput screens may uncover selective chemical matter. Herein, we employed a DNA-encoded library screen to identify PDE3B-selective inhibitors and identified potent and selective boronic acid compounds bound at the active site.


Subject(s)
DNA , Heart , Humans , Catalytic Domain , Cyclic Nucleotide Phosphodiesterases, Type 3
5.
Bioorg Med Chem Lett ; 23(12): 3584-8, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23664879

ABSTRACT

1-(1,3,5-Triazin-yl)piperidine-4-carboxamide inhibitors of soluble epoxide hydrolase were identified from high through-put screening using encoded library technology. The triazine heterocycle proved to be a critical functional group, essential for high potency and P450 selectivity. Phenyl group substitution was important for reducing clearance, and establishing good oral exposure. Based on this lead optimization work, 1-[4-methyl-6-(methylamino)-1,3,5-triazin-2-yl]-N-{[[4-bromo-2-(trifluoromethoxy)]-phenyl]methyl}-4-piperidinecarboxamide (27) was identified as a useful tool compound for in vivo investigation. Robust effects on a serum biomarker, 9, 10-epoxyoctadec-12(Z)-enoic acid (the epoxide derived from linoleic acid) were observed, which provided evidence of robust in vivo target engagement and the suitability of 27 as a tool compound for study in various disease models.


Subject(s)
Amides/chemistry , Amides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Piperidines/chemistry , Piperidines/pharmacology , Amides/chemical synthesis , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Epoxide Hydrolases/metabolism , Humans , Models, Molecular , Piperidines/chemical synthesis , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry , Triazines/pharmacology
6.
Proc Natl Acad Sci U S A ; 105(8): 2773-8, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18287036

ABSTRACT

Analysis of the x-ray crystal structure of mono-substituted acetylenic thienopyrimidine 6 complexed with the ErbB family enzyme ErbB-4 revealed a covalent bond between the terminal carbon of the acetylene moiety and the sulfhydryl group of Cys-803 at the solvent interface. The identification of this covalent adduct suggested that acetylenic thienopyrimidine 6 and related analogs might also be capable of forming an analogous covalent adduct with EGFR, which has a conserved cysteine (797) near the ATP binding pocket. To test this hypothesis, we treated a truncated, catalytically competent form of EGFR (678-1020) with a structurally related propargylic amine (8). An investigation of the resulting complex by mass spectrometry revealed the formation of a covalent complex of thienopyrimidine 8 with Cys-797 of EGFR. This finding enabled us to readily assess the irreversibility of various inhibitors and also facilitated a structure-activity relationship understanding of the covalent modifying potential and biological activity of a series of acetylenic thienopyrimidine compounds with potent antitumor activity. Several ErbB family enzyme and cell potent 6-ethynyl thienopyrimidine kinase inhibitors were found to form covalent adducts with EGFR.


Subject(s)
Alkynes/metabolism , Aniline Compounds/metabolism , ErbB Receptors/metabolism , Models, Molecular , Pyrimidines/metabolism , Animals , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Isatin/analogs & derivatives , Isatin/metabolism , Mass Spectrometry , Mice , Mice, SCID , Molecular Structure , Pyrimidines/toxicity , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
Bioorg Med Chem Lett ; 19(3): 817-20, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19111461

ABSTRACT

Two new series of potent and selective dual EGFR/ErbB-2 kinase inhibitors derived from novel thienopyrimidine cores have been identified. Isomeric thienopyrimidine cores were evaluated as isosteres for a 4-anilinoquinazoline core and several analogs containing the thieno[3,2-d]pyrimidine core showed anti-proliferative activity with IC(50) values less than 1 microM against human tumor cells in vitro.


Subject(s)
Antineoplastic Agents/pharmacology , Chemistry, Pharmaceutical/methods , ErbB Receptors/chemistry , Pyrimidines/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Lapatinib , Models, Chemical , Molecular Conformation , Quinazolines/pharmacology
10.
J Med Chem ; 51(12): 3349-52, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18522385

ABSTRACT

An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17 alpha furoate ester to occupy more fully the lipophilic 17 alpha pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.


Subject(s)
Androstadienes/chemistry , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Nuclear Receptor Coactivator 2/chemistry , Protein Conformation
11.
Bioorg Med Chem Lett ; 18(21): 5758-62, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18835709

ABSTRACT

A novel series of pyrazolo[1,5-b]pyridazines have been synthesized and identified as cyclin dependant kinase inhibitors potentially useful for the treatment of solid tumors. Modification of the hinge-binding amine or the C(2)- and C(6)-substitutions on the pyrazolopyridazine core provided potent inhibitors of CDK4 and demonstrated enzyme selectivity against VEGFR-2 and GSK3beta.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta , Models, Molecular , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
12.
J Med Chem ; 58(17): 7021-56, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26267483

ABSTRACT

Starting from the micromolar 8-quinoline carboxamide high-throughput screening hit 1a, a systematic exploration of the structure-activity relationships (SAR) of the 4-, 6-, and 8-substituents of the quinoline ring resulted in the identification of approximately 10-100-fold more potent human CD38 inhibitors. Several of these molecules also exhibited pharmacokinetic parameters suitable for in vivo animal studies, including low clearances and decent oral bioavailability. Two of these CD38 inhibitors, 1ah and 1ai, were shown to elevate NAD tissue levels in liver and muscle in a diet-induced obese (DIO) C57BL/6 mouse model. These inhibitor tool compounds will enable further biological studies of the CD38 enzyme as well as the investigation of the therapeutic implications of NAD enhancement in disease models of abnormally low NAD.


Subject(s)
ADP-ribosyl Cyclase 1/antagonists & inhibitors , Amides/chemistry , Aminoquinolines/chemistry , NAD/metabolism , Quinolines/chemistry , Amides/chemical synthesis , Amides/pharmacology , Aminoquinolines/chemical synthesis , Aminoquinolines/pharmacology , Animals , Biological Availability , Crystallography, X-Ray , Humans , Hydrolysis , Liver/metabolism , Membranes, Artificial , Mice, Inbred C57BL , Models, Molecular , Muscle, Skeletal/metabolism , Obesity/metabolism , Permeability , Protein Conformation , Quinolines/chemical synthesis , Quinolines/pharmacology , Stereoisomerism , Structure-Activity Relationship
13.
J Med Chem ; 47(3): 588-99, 2004 Jan 29.
Article in English | MEDLINE | ID: mdl-14736240

ABSTRACT

Osteoclast-mediated bone matrix resorption has been attributed to cathepsin K, a cysteine protease of the papain family that is abundantly and selectively expressed in osteoclast. Inhibition of cathepsin K could potentially be an effective method to prevent osteoporosis. Structure-activity studies on a series of reversible ketoamides based inhibitors of cathepsin K have led to identification of potent and selective compounds. Crystallographic studies have given insights into the mode of binding of these inhibitors. A series of ketoamides with varying P1 moieties were first synthesized to find an optimum group that would fit into the S1 subsite of the cysteine protease, cathepsin K. With a desired P1 group in place a variety of heterocyclic analogues in the P' region were synthesized to study their steric and electronic effects. In the process of exploring these P' heterocyclic variations, excellent selectivity was gained over other highly homologous cysteine proteases, including cathepsins L, S, and V. The favorable pharmacokinetic properties of some of these cathepsin K inhibitors in rats make them suitable for evaluation in rodent osteoporosis models. A representative cathepsin K inhibitor was shown to attenuate PTH-stimulated hypercalcemia in the TPTX rat model. These inhibitors provide a viable lead series in the discovery of new therapies for the prevention and treatment of osteoporosis


Subject(s)
Amides/chemical synthesis , Cathepsins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemical synthesis , Ketones/chemical synthesis , Administration, Oral , Amides/pharmacokinetics , Amides/pharmacology , Animals , Biological Availability , Calcium/blood , Cathepsin K , Cathepsins/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/pharmacokinetics , Cysteine Proteinase Inhibitors/pharmacology , Humans , Ketones/pharmacokinetics , Ketones/pharmacology , Male , Models, Molecular , Molecular Structure , Osteoporosis/metabolism , Rats , Rats, Wistar , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Structure-Activity Relationship
14.
PLoS One ; 7(8): e43019, 2012.
Article in English | MEDLINE | ID: mdl-22952628

ABSTRACT

Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/ß-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The "specificity domains" are structurally also completely different exhibiting a ß-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.


Subject(s)
Dipeptidyl Peptidase 4/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Proline/chemistry , Amino Acids/chemistry , Animals , Base Sequence , CHO Cells , Catalysis , Catalytic Domain , Cricetinae , Dimerization , Dipeptidyl Peptidase 4/chemistry , Evolution, Molecular , Humans , Insecta , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Substrate Specificity
15.
J Med Chem ; 55(16): 7193-207, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22827572

ABSTRACT

Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is activated in response to a variety of endoplasmic reticulum stresses implicated in numerous disease states. Evidence that PERK is implicated in tumorigenesis and cancer cell survival stimulated our search for small molecule inhibitors. Through screening and lead optimization using the human PERK crystal structure, we discovered compound 38 (GSK2606414), an orally available, potent, and selective PERK inhibitor. Compound 38 inhibits PERK activation in cells and inhibits the growth of a human tumor xenograft in mice.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Indoles/chemical synthesis , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , eIF-2 Kinase/antagonists & inhibitors , Adenine/chemical synthesis , Adenine/chemistry , Adenine/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemistry , Indoles/pharmacology , Male , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Phosphorylation , Protein Conformation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Transplantation, Heterologous
16.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 1): 72-9, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17164529

ABSTRACT

Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein-ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks.


Subject(s)
Crystallization , Crystallography, X-Ray/methods , Proteins/chemistry , Animals , Binding Sites , Carrier Proteins/chemistry , Humans , Ligands , Liposomes/chemistry , Molecular Conformation , Mutation , Receptors, Androgen/chemistry , Receptors, Glucocorticoid/chemistry , Receptors, Mineralocorticoid/chemistry , Temperature
17.
J Chem Inf Model ; 46(6): 2552-62, 2006.
Article in English | MEDLINE | ID: mdl-17125195

ABSTRACT

Anilinopyrazoles as CDK2 inhibitors can adopt multiple binding modes depending on the substituents at the 5-position of the pyrazole ring, based on CDK2/cyclin A crystallographic studies. Three commercially available docking programs, FlexX, GOLD, and LigandFit, were tested with 63 anilinopyrazole analogues in an attempt to reproduce the binding modes observed in the crystal structures. Each docking program gave different ligand conformations depending on the scoring or energy functions used. FlexX/drugscore, GOLD/chemscore, and LigandFit/plp were the best combinations of each docking program in reproducing the ligand conformations observed in the crystal structures. The 63 analogues were divided into two groups, type-A and type-B, depending on the substituent at the 5-position of the pyrazole ring. Although an alternate binding mode, observed in a crystal structure of one type-B compound, could not be reproduced with any of the above docking/scoring combinations, GOLD, with a template constraint based on the crystal structure coordinates, was able to reproduce the pose. As for type-A compounds, all docking conditions yielded similar poses to those observed in crystal structures. When predicting activities by scoring programs, the combination of docking with LigandFit/plp and scoring with LIGSCORE1_CFF gave the best correlation coefficient (r=0.60) between experimental pIC50 values and top-ranked rescores of 30 poses of each compound. With regard to type-A compounds, the correlation was 0.69. However, when 11 compounds, whose top-ranked rescored poses did not demonstrate the correct binding modes in reference to the crystal structure, were removed, the correlation rose to 0.75. Consequently, predicting activity on the basis of correct binding modes was found to be reliable.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Pyrazoles/chemistry , Algorithms , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray , Databases, Protein , Drug Design , Drug Industry/methods , Evaluation Studies as Topic , Humans , Ligands , Protein Binding , Protein Structure, Tertiary , Software
18.
Bioorg Med Chem Lett ; 16(24): 6236-40, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-16997559

ABSTRACT

The identification and hit-to-lead exploration of a novel, potent and selective series of substituted benzimidazole-thiophene carbonitrile inhibitors of IKK-epsilon kinase is described. Compound 12e was identified with an IKK-epsilon enzyme potency of pIC(50) 7.4, and has a highly encouraging wider selectivity profile, including selectivity within the IKK kinase family.


Subject(s)
Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , I-kappa B Kinase/antagonists & inhibitors , Nitriles/chemical synthesis , Nitriles/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Hydrogen Bonding , Kinetics , Models, Molecular , Thiophenes/chemistry , X-Ray Diffraction
20.
Bioorg Med Chem Lett ; 16(4): 978-83, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16290936

ABSTRACT

Starting from potent aldehyde inhibitors with poor drug properties, derivatization to semicarbazones led to the identification of a series of semicarbazone-based cathepsin K inhibitors with greater solubility and better pharmacokinetic profiles than their parent aldehydes. Furthermore, a representative semicarbazone inhibitor attenuated bone resorption in an ex vivo rat calvarial bone resorption model. However, based on enzyme inhibition comparisons at neutral pH, semicarbazone hydrolysis rates, and 13C NMR experiments, these semicarbazones probably function as prodrugs of aldehydes.


Subject(s)
Aldehydes/chemistry , Cathepsins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Semicarbazones/pharmacology , Animals , Cathepsin K , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Molecular Conformation , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Rats , Semicarbazones/chemical synthesis , Semicarbazones/chemistry , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL