Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.236
Filter
Add more filters

Publication year range
1.
Cell ; 175(5): 1307-1320.e22, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392957

ABSTRACT

In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.


Subject(s)
Cell Differentiation , Cell Self Renewal , Interleukin-10/metabolism , Stem Cells/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cytokines/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Histocompatibility Antigens Class II/metabolism , Immune System/metabolism , Intestines/cytology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Receptors, G-Protein-Coupled/metabolism , Salmonella enterica/pathogenicity , Stem Cells/metabolism , T-Lymphocytes, Helper-Inducer/cytology
2.
Nature ; 631(8022): 826-834, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987597

ABSTRACT

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.


Subject(s)
Acid Sensing Ion Channels , Brain Ischemia , Glutamic Acid , Animals , Female , Humans , Male , Mice , 2-Amino-5-phosphonovalerate/adverse effects , 2-Amino-5-phosphonovalerate/metabolism , 2-Amino-5-phosphonovalerate/pharmacology , Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/deficiency , Acid Sensing Ion Channels/drug effects , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Allosteric Regulation/drug effects , Binding Sites/genetics , Brain Ischemia/chemically induced , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Glutamic Acid/analogs & derivatives , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Glutamic Acid/toxicity , Mice, Knockout , Mutagenesis, Site-Directed , Protons , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Immunity ; 51(4): 696-708.e9, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618654

ABSTRACT

Signaling abnormalities in immune responses in the small intestine can trigger chronic type 2 inflammation involving interaction of multiple immune cell types. To systematically characterize this response, we analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA sequencing (scRNA-seq) at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA). Computational analysis revealed broad shifts in both cell-type composition and cell programs in response to the inflammation, especially in group 2 innate lymphoid cells (ILC2s). Inflammation induced the expression of exon 5 of Calca, which encodes the alpha-calcitonin gene-related peptide (α-CGRP), in intestinal KLRG1+ ILC2s. α-CGRP antagonized KLRG1+ ILC2s proliferation but promoted IL-5 expression. Genetic perturbation of α-CGRP increased the proportion of intestinal KLRG1+ ILC2s. Our work highlights a model where α-CGRP-mediated neuronal signaling is critical for suppressing ILC2 expansion and maintaining homeostasis of the type 2 immune machinery.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Inflammation/immunology , Intestines/immunology , Lymphocytes/immunology , Neuropeptides/metabolism , Animals , Calcitonin Gene-Related Peptide/genetics , Cells, Cultured , Computational Biology , Immunity, Innate , Interleukin-5/genetics , Interleukin-5/metabolism , Lectins, C-Type/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Neuropeptides/genetics , Receptors, Immunologic/metabolism , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Th2 Cells/immunology , Transcriptome , Up-Regulation
4.
Anal Chem ; 96(8): 3662-3671, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38363802

ABSTRACT

Precise profiling of the cytokine panel consisting of different levels of cytokines can provide personalized information about several diseases at certain stages. In this study, we have designed and fabricated an "all-in-one" diagnostic tool kit to bioassay multiple inflammatory cytokines ranging from picograms per milliliter to µg/mL in a small cytokine panel. Taking advantage of the kit fabricated by the DNA-encoded assembly of nanocatalysts in dynamic regulation and signal amplification, we have demonstrated the multiplex, visual, and quantitative detection of C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) with limits of detection of 1.6 ng/mL (61.54 pM), 20 pg/mL (1.57 pM), and 4 pg/mL (0.19 pM), respectively. This diagnostic tool kit can work well with commercial kits for detecting serum cytokines from breast cancer patients treated with immunotherapies. Furthermore, a small cytokine panel composed of CRP, PCT, and IL-6 is revealed to be significantly heterogeneous in each patient and highly dynamic for different treatment courses, showing promise as a panel of quantitative biomarker candidates for individual treatments. So, our work may provide a versatile diagnostic tool kit for the visual detection of clinical biomarkers with an adjustable broad detection range.


Subject(s)
Breast Neoplasms , Cytokines , Humans , Female , Interleukin-6 , Breast Neoplasms/diagnosis , C-Reactive Protein , Biomarkers , Procalcitonin
5.
Plant Biotechnol J ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859598

ABSTRACT

Camelina (Camelina sativa L.), a hexaploid member of the Brassicaceae family, is an emerging oilseed crop being developed to meet the increasing demand for plant oils as biofuel feedstocks. In other Brassicas, high oil content can be associated with a yellow seed phenotype, which is unknown for camelina. We sought to create yellow seed camelina using CRISPR/Cas9 technology to disrupt its Transparent Testa 8 (TT8) transcription factor genes and to evaluate the resulting seed phenotype. We identified three TT8 genes, one in each of the three camelina subgenomes, and obtained independent CsTT8 lines containing frameshift edits. Disruption of TT8 caused seed coat colour to change from brown to yellow reflecting their reduced flavonoid accumulation of up to 44%, and the loss of a well-organized seed coat mucilage layer. Transcriptomic analysis of CsTT8-edited seeds revealed significantly increased expression of the lipid-related transcription factors LEC1, LEC2, FUS3, and WRI1 and their downstream fatty acid synthesis-related targets. These changes caused metabolic remodelling with increased fatty acid synthesis rates and corresponding increases in total fatty acid (TFA) accumulation from 32.4% to as high as 38.0% of seed weight, and TAG yield by more than 21% without significant changes in starch or protein levels compared to parental line. These data highlight the effectiveness of CRISPR in creating novel enhanced-oil germplasm in camelina. The resulting lines may directly contribute to future net-zero carbon energy production or be combined with other traits to produce desired lipid-derived bioproducts at high yields.

6.
New Phytol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044722

ABSTRACT

The initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear. Manipulation of the mechanical constraints affecting either the in vivo or in vitro growth of oilseed rape embryos was combined with analytical approaches, including magnetic resonance imaging and computer graphic reconstruction, immunolabelling, flow cytometry, transcriptomic, proteomic, lipidomic and metabolomic profiling. Our data implied that, in vivo, the imposition of mechanical restraints impeded the expansion of testa and endosperm, resulting in the embryo's deformation. An acceleration in embryonic development was implied by the cessation of cell proliferation and the stimulation of lipid and protein storage, characteristic of embryo maturation. The underlying molecular signature included elements of cell cycle control, reactive oxygen species metabolism and transcriptional reprogramming, along with allosteric control of glycolytic flux. Constricting the space allowed for the expansion of in vitro grown embryos induced a similar response. The conclusion is that the imposition of mechanical constraints over the growth of the developing oilseed rape embryo provides an important trigger for its maturation.

7.
Opt Lett ; 49(16): 4561-4564, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146103

ABSTRACT

Quantum entanglement serves as an essential resource across various fields, including quantum communication, quantum computing, and quantum precision measurement. Quantum microscope, as one of the significant applications in quantum precision measurement, could bring revolutionary advancements in both signal-to-noise ratio (SNR) and spatial resolution of imaging. Here, we present a quantum microscopy system that relies on a fully fiber-integrated high-performance energy-time entangled light source operating within the near-infrared II (NIR-II) window. Complemented by tailored real-time data acquisition and processing software, we successfully demonstrate the quantum imaging of a standard target, achieving a SNR of 131.51 ± 6.74 and a spatial resolution of 4.75 ± 0.27 µm. Furthermore, we showcase quantum imaging of cancer cells, unveiling the potential of quantum entanglement in biomedical applications. Our fiber-integrated quantum microscope, characterized by high imaging SNR, instantaneous image capture, and analysis capabilities, marks an important step toward the practical application in life sciences.

8.
Phys Rev Lett ; 132(10): 100803, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518317

ABSTRACT

Quantum many-body interactions can induce quantum entanglement among particles, rendering them valuable resources for quantum-enhanced sensing. In this work, we establish a link between the bound on the growth of the quantum Fisher information and the Lieb-Robinson bound, which characterizes the operator growth in locally interacting quantum many-body systems. We show that for initial separable states, despite the use of local many-body interactions, the precision cannot surpass the shot noise limit at all times. This conclusion also holds for an initial state that is the nondegenerate ground state of a local and gapped Hamiltonian. These findings strongly hint that when one can only prepare separable initial states, nonlocal and long-range interactions are essential resources for surpassing the shot noise limit. This observation is confirmed through numerical analysis on the long-range Ising model. Our results bridge the field of many-body quantum sensing and operator growth in many-body quantum systems and open the possibility to investigate the interplay between quantum sensing and control, many-body physics and information scrambling.

9.
BMC Cancer ; 24(1): 848, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020302

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS: Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS: Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION: SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Forkhead Box Protein M1 , Lung Neoplasms , RNA, Long Noncoding , Sirtuins , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , Mice , Sirtuins/metabolism , Sirtuins/genetics , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
10.
J Magn Reson Imaging ; 59(5): 1852-1861, 2024 May.
Article in English | MEDLINE | ID: mdl-37548106

ABSTRACT

BACKGROUND: Gadolinium (Gd)-based contrast agents (GBCAs) have been widely used for acute ischemic stroke (AIS) patients. GBCAs or AIS alone may cause the adverse effects on kidney tissue, respectively. However, whether GBCAs and AIS would generate a synergistic negative effect remains undefined. PURPOSE: To evaluate synergistic negative effects of AIS and GBCAs on renal tissues in a mouse model of AIS, and to compare the differences of these negative effects between linear and macrocyclic GBCAs. STUDY TYPE: Animal study. ANIMAL MODEL: Seventy-two healthy mice underwent transient middle cerebral artery occlusion (tMCAO) and sham operation to establish AIS and sham model (N = 36/model). 5.0 mmol/kg GBCAs (gadopentetate or gadobutrol) or 250 µL saline were performed at 4.5 hours and 1 day after model establishing (N = 12/group). ASSESSMENT: Inductively coupled plasma mass spectrometry (ICP-MS) was performed to detect Gd concentrations. Serum biochemical analyzer was performed to measure the serum creatinine (Scr), uric acid (UA), and blood urea nitrogen (BUN). Pathological staining was performed to observe tubular injury, cell apoptosis, mesangial hyperplasia, and interstitial fibrosis. STATISTICAL TESTS: Two-way analysis of variances with post hoc Sidak's tests and independent-samples t-tests were performed. A P-value <0.05 was considered statistically significant. RESULTS: AIS groups showed higher Gd concentration than sham group on day 1 p.i. regardless of gadopentetate or gadobutrol used. Increased total Gd concentration was also found in AIS + gadopentetate group compared with the sham group on day 28 p.i. Significantly higher rates for renal dysfunction, higher tubular injury scores, and higher numbers of apoptotic cells on days 1 or 28 p.i. were found for AIS mice injected with GBCA. AIS + gadopentetate group displayed more severe renal damage than the AIS + gadobutrol group. DATA CONCLUSION: AIS and GBCAs may cause increased total Gd accumulation and nephrotoxicity in a mouse, especially linear GBCAs were used. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.


Subject(s)
Ischemic Stroke , Organometallic Compounds , Humans , Mice , Animals , Gadolinium DTPA/toxicity , Gadolinium/adverse effects , Contrast Media/adverse effects , Disease Models, Animal , Brain
11.
Inorg Chem ; 63(6): 3075-3082, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38295520

ABSTRACT

Herein, an unprecedented cadmium-based metal-organic framework (JNU-106) fabricated by utilizing pyrazole-functionalized tetraphenylethylene ligands (Py-TPE) and rod-shaped secondary building units is reported, possessing a new (3,3,3,6,6,8)-connected topological network. Thanks to the ingeniously designed intramolecular charge transfer behavior, which originates from the congruent coplanarity between Py and TPE, JNU-106 exhibits intense green luminescence with a quantum yield increased by 1.5 times. The phenomenon of remarkable fluorescence quenching of JNU-106 reveals that it possesses extremely high anti-interference performance, superior sensitivity, and dedicated selectivity toward tetracycline antibiotics (TCAs) in aqueous solutions, which are comparable to those of the state-of-the-art porous sensing compounds. Taking the theoretical calculations and experimental results into account, the luminescence quenching is mainly attributed to the internal filtration effect and the static quenching effect. Considering the portable and rapid performance of JNU-106-based testing strips for sensing TCAs, the fabricated JNU-106 provides an alternative for ecological monitoring and environmental governance.

12.
J Comput Assist Tomogr ; 48(2): 298-302, 2024.
Article in English | MEDLINE | ID: mdl-37757843

ABSTRACT

OBJECTIVE: This study aimed to provide an alternative approach for quantifying the volume of the ischemic core (IC) if truncation of computed tomography perfusion (CTP) occurs in clinical practice. METHODS: Baseline CTP and follow-up diffusion-weighted imaging (DWI) data from 88 patients with stroke were retrospectively collected. CTP source images (CTPSI) from the unenhanced phase to the peak arterial phase (CTPSI-A) or the peak venous phase (CTPSI-V) were collected to simulate the truncation of CTP in the arterial or venous phases, respectively. The volume of IC on CTPSI-A (V CTPSI-A ) or CTPSI-V (V CTPSI-V ) was defined as the volume of the brain tissue with >65% reduction in attenuation compared with that of the normal tissue. The volume of IC on the baseline CTP (V CTP ) was defined as a relative cerebral blood flow of <30% of that in the normal tissue. The volume of the posttreatment infarct on the follow-up DWI (V DWI ) image was manually delineated and calculated. One-way analysis of variance, Bland-Altman plots, and Spearman correlation analyses were used for the statistical analysis. RESULTS: V CTPSI-A was significantly higher than V DWI ( P < 0.001); however, no significant difference was observed between V CTP and V DWI ( P = 0.073) or between V CTPSI-V and V DWI ( P > 0.999). The mean differences between V DWI and V CTPSI-V , V DWI and V CTP , and V DWI and V CTPSI-A were 1.70 mL (limits of agreement [LoA], -56.40 to 59.70), 8.30 mL (LoA, -40.70 to 57.30), and -68.10 mL (LoA, -180.90 to 44.70), respectively. Significant correlations were observed between V DWI and V CTP ( r = 0.68, P < 0.001) and between V DWI and V CTPSI-V ( r = 0.39, P < 0.001); however, no significant correlation was observed between V DWI and V CTPSI-A ( r = 0.20, P = 0.068). CONCLUSIONS: V CTPSI-V may be a promising method for quantifying the volume of the IC if truncation of CTP occurs.


Subject(s)
Brain Ischemia , Stroke , Humans , Retrospective Studies , Tomography, X-Ray Computed/methods , Diffusion Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Perfusion , Brain Ischemia/diagnostic imaging , Cerebrovascular Circulation/physiology
13.
BMC Womens Health ; 24(1): 213, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566121

ABSTRACT

BACKGROUND: Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS: In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS: Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION: Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.


Subject(s)
Carcinoma , Glutaminase , Humans , Glutaminase/genetics , Multiomics , Research , Biomarkers
14.
Chem Biodivers ; 21(7): e202400832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38712949

ABSTRACT

Two new cytochalasans, marcytoglobosins A (1) and B (2) were isolated from the marine sponge associated fungus Chaetomium globosum 162105, along with six known compounds (3-8). The complete structures of two new compounds were determined based on 1D/2D NMR and HR-MS spectroscopic analyses coupled with ECD calculations. All eight isolates were evaluated for their antibacterial activity. Among them, compounds 3-8 displayed antibacterial effects against Staphylococcus epidermidis, Bacillus thuringiensis, Pseudomonas syringae pv. Actinidiae, Vibrio alginolyticus, and Edwardsiella piscicida with minimum inhibitory concentration (MIC) values ranging from 10 to 25 µg/mL.


Subject(s)
Anti-Bacterial Agents , Chaetomium , Microbial Sensitivity Tests , Porifera , Chaetomium/chemistry , Animals , Porifera/microbiology , Porifera/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cytochalasins/pharmacology , Cytochalasins/chemistry , Cytochalasins/isolation & purification , Molecular Conformation
15.
J Asian Nat Prod Res ; 26(10): 1254-1260, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945154

ABSTRACT

A new steroid, 2a-oxa-2-oxo-5ß-hydroxy-3,4-dinor-24-methylcholesta-22E-ene (1), together with 10 known ones (2-11), was isolated from the marine sponge Cliona sp. The structures of these compounds were determined by the spectroscopic methods (UV, IR, MS, and NMR) and X-ray diffraction analysis. Compound 1 was the third example of 3,4-dinorsteroid with a hemiketal at C-5 that was isolated from the natural source. In addition, the antibacterial activities of these compounds were also evaluated. However, none of them exhibited significant inhibition effects.


Subject(s)
Anti-Bacterial Agents , Marine Biology , Porifera , Animals , Porifera/chemistry , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Nuclear Magnetic Resonance, Biomolecular , Steroids/chemistry , Steroids/pharmacology , Steroids/isolation & purification , Crystallography, X-Ray
16.
J Asian Nat Prod Res ; 26(3): 328-333, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37602427

ABSTRACT

(+)- and (-)-Tedanine [(+)-1 and (-)-1], a pair of new enantiomeric indolone alkaloids, along with nine compounds (2-10) were isolated from the marine sponge Tedania sp. The structures of (+)-1 and (-)-1 including absolute configurations were determined by spectroscopic analysis and quantum chemical calculation. Compounds (+)-1 and (-)-1 were the first examples of indolone alkaloids isolated from this genus. In addition, the cytotoxic and antibacterial activities of these compounds were also evaluated.


Subject(s)
Alkaloids , Antineoplastic Agents , Porifera , Animals , Porifera/chemistry , Alkaloids/chemistry , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Molecular Structure
17.
J Neurosci ; 42(26): 5198-5211, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35610048

ABSTRACT

We studied the changes that neuronal receptive field (RF) models undergo when the statistics of the stimulus are changed from those of white Gaussian noise (WGN) to those of natural scenes (NSs), by fitting the models to multielectrode data recorded from primary visual cortex (V1) of female cats. This allowed the estimation of both a cascade of linear filters on the stimulus, as well as the static nonlinearities that map the output of the filters to the neuronal spike rates. We found that cells respond differently to these two classes of stimuli, with mostly higher spike rates and shorter response latencies to NSs than to WGN. The most striking finding was that NSs resulted in RFs that had additional uncovered filters compared with WGN. This finding was not an artifact of the higher spike rates observed for NSs relative to WGN, but rather was related to a change in coding. Our results reveal a greater extent of nonlinear processing in V1 neurons when stimulated using NSs compared with WGN. Our findings indicate the existence of nonlinear mechanisms that endow V1 neurons with context-dependent transmission of visual information.SIGNIFICANCE STATEMENT This study addresses a fundamental question about the concept of the receptive field (RF): does the encoding of information depend on the context or statistical regularities of the stimulus type? We applied state-of-the-art RF modeling techniques to data collected from multielectrode recordings from cat visual cortex in response to two statistically distinct stimulus types: white Gaussian noise and natural scenes. We find significant differences between the RFs that emerge from our data-driven modeling. Natural scenes result in far more complex RFs that combine multiple features in the visual input. Our findings reveal that different regimes or modes of operation are at work in visual cortical processing depending on the information present in the visual input. The complexity of V1 neural coding appears to be dependent on the complexity of the stimulus. We believe this new finding will have interesting implications for our understanding of the efficient transmission of information in sensory systems, which is an integral assumption of many computational theories (e.g., efficient and predictive coding of sensory processing in the brain).


Subject(s)
Visual Cortex , Visual Fields , Animals , Female , Photic Stimulation/methods , Primary Visual Cortex , Visual Cortex/physiology , Visual Perception/physiology
18.
Br J Cancer ; 128(7): 1267-1277, 2023 03.
Article in English | MEDLINE | ID: mdl-36646808

ABSTRACT

BACKGROUND: To develop and test a Prostate Imaging Stratification Risk (PRISK) tool for precisely assessing the International Society of Urological Pathology Gleason grade (ISUP-GG) of prostate cancer (PCa). METHODS: This study included 1442 patients with prostate biopsy from two centres (training, n = 672; internal test, n = 231 and external test, n = 539). PRISK is designed to classify ISUP-GG 0 (benign), ISUP-GG 1, ISUP-GG 2, ISUP-GG 3 and ISUP GG 4/5. Clinical indicators and high-throughput MRI features of PCa were integrated and modelled with hybrid stacked-ensemble learning algorithms. RESULTS: PRISK achieved a macro area-under-curve of 0.783, 0.798 and 0.762 for the classification of ISUP-GGs in training, internal and external test data. Permitting error ±1 in grading ISUP-GGs, the overall accuracy of PRISK is nearly comparable to invasive biopsy (train: 85.1% vs 88.7%; internal test: 85.1% vs 90.4%; external test: 90.4% vs 94.2%). PSA ≥ 20 ng/ml (odds ratio [OR], 1.58; p = 0.001) and PRISK ≥ GG 3 (OR, 1.45; p = 0.005) were two independent predictors of biochemical recurrence (BCR)-free survival, with a C-index of 0.76 (95% CI, 0.73-0.79) for BCR-free survival prediction. CONCLUSIONS: PRISK might offer a potential alternative to non-invasively assess ISUP-GG of PCa.


Subject(s)
Deep Learning , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Neoplasm Grading , Prostate/diagnostic imaging , Prostate/surgery , Prostate/pathology , Magnetic Resonance Imaging
19.
BMC Plant Biol ; 23(1): 458, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789269

ABSTRACT

BACKGROUND: Duckweeds are small, rapidly growing aquatic flowering plants. Due to their ability for biomass production at high rates they represent promising candidates for biofuel feedstocks. Duckweeds are also excellent model organisms because they can be maintained in well-defined liquid media, usually reproduce asexually, and because genomic resources are becoming increasingly available. To demonstrate the utility of duckweed for integrated metabolic studies, we examined the metabolic adaptation of growing Lemna gibba cultures to different nutritional conditions. RESULTS: To establish a framework for quantitative metabolic research in duckweeds we derived a central carbon metabolism network model of Lemna gibba based on its draft genome. Lemna gibba fronds were grown with nitrate or glutamine as nitrogen source. The two conditions were compared by quantification of growth kinetics, metabolite levels, transcript abundance, as well as by 13C-metabolic flux analysis. While growing with glutamine, the fronds grew 1.4 times faster and accumulated more protein and less cell wall components compared to plants grown on nitrate. Characterization of photomixotrophic growth by 13C-metabolic flux analysis showed that, under both metabolic growth conditions, the Calvin-Benson-Bassham cycle and the oxidative pentose-phosphate pathway are highly active, creating a futile cycle with net ATP consumption. Depending on the nitrogen source, substantial reorganization of fluxes around the tricarboxylic acid cycle took place, leading to differential formation of the biosynthetic precursors of the Asp and Gln families of proteinogenic amino acids. Despite the substantial reorganization of fluxes around the tricarboxylic acid cycle, flux changes could largely not be associated with changes in transcripts. CONCLUSIONS: Through integrated analysis of growth rate, biomass composition, metabolite levels, and metabolic flux, we show that Lemna gibba is an excellent system for quantitative metabolic studies in plants. Our study showed that Lemna gibba adjusts to different nitrogen sources by reorganizing central metabolism. The observed disconnect between gene expression regulation and metabolism underscores the importance of metabolic flux analysis as a tool in such studies.


Subject(s)
Araceae , Transcriptome , Glutamine/genetics , Nitrates/metabolism , Araceae/genetics , Nitrogen/metabolism
20.
Plant Biotechnol J ; 21(2): 317-330, 2023 02.
Article in English | MEDLINE | ID: mdl-36209479

ABSTRACT

Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 µm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Araceae , Animals , Mice , Triglycerides/metabolism , Lipids , Fatty Acids/metabolism , Arabidopsis/genetics , Araceae/genetics , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Arabidopsis Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL