ABSTRACT
BACKGROUND: To identify incidence and underlying risk factors for unsuspected placenta accreta spectrum (PAS) and compare the maternal outcomes between suspected and unsuspected cases in three large academic referral centers. METHODS: A retrospective cohort study was conducted in three university-based tertiary referral centers from Jan 1st, 2013, to Dec 31st, 2022. All cases of PAS confirmed by pathology were included in the study. Unsuspected PAS cases were diagnosed at the time of delivery, while suspected cases served as the control group. Potential risk factors were compared between the two groups. Multivariable regression model was also performed to identify risk factors. Maternal outcomes were also evaluated. RESULTS: A total of 339 pathology-confirmed PAS cases were included in the study out of 415,470 deliveries, of which 35.4% (n = 120) were unsuspected cases. Unsuspected PAS cases were 7.9 times more likely to have a history of intrauterine adhesions (adjusted odds ratio [aOR] 7.93; 95% confidence interval [CI] 2.35-26.81), 7.0 times more likely to have a history of clinically confirmed PAS (aOR, 6.99; 95% CI 2.85-17.18), 6.3 times more likely to have a posterior placenta (aOR, 6.30; 95% CI 3.48-11.40), and 3.4 times more likely to have a history of placenta previa (aOR, 3.41; 95% CI 1.18-9.82). On the other hand, cases with gravidity > 3, placenta previa, and/or a history of previous cesarean delivery were more likely to be diagnosed antenatally (aOR 0.40, 0.19, 0.36; 95% CI 0.22-0.74, 0.09-0.40, 0.19-0.70). Although the suspected PAS group had a higher proportion of invasive cases and abdominal and pelvic organ injuries (74.4% vs. 25.8%, p < 0.001; 6.8% vs. 1.7%, p = 0.037), the maternal outcomes were more favorable in the sPAS group, with a lower median volume of 24-hour blood loss and blood product transfusion (estimated blood loss in 24 h, 1000 [800-2000] vs. 2000 [1400-2400], p < 0.001; RBC unit transfusion, 0 [0-800] vs. 800 [600-1000], p < 0.001; fresh-frozen plasma transfusion, 0 [0-450] vs. 600 [400-800], p < 0.001). CONCLUSIONS: Our findings indicate that 35% of patients with PAS were unsuspected prior to delivery. Factors associated with PAS being unsuspected prior to delivery include a history of intrauterine adhesions, a history of clinically confirmed PAS, a posterior placenta, and a history of placenta previa. Additionally, gravidity > 3, a history of previous cesarean delivery, and placenta previa increase the likelihood of antenatal diagnosis.
Subject(s)
Placenta Accreta , Placenta Previa , Uterine Diseases , Female , Humans , Pregnancy , Blood Component Transfusion , Incidence , Placenta Accreta/epidemiology , Placenta Previa/epidemiology , Plasma , Retrospective StudiesABSTRACT
OBJECTIVES: To develop a rapid and accurate assay system for screening inhibitors or enhancing agents targeting the transactivation capability of hepatitis B virus X protein (HBx) that activates cellular promoters in host cells to facilitate viral replication. RESULTS: We constructed a new GFP-based reporter system which was different from a luciferase-based reporter system. Firstly, a FLAG-tagged HBx gene was inserted into an expression plasmid, resulting in plasmid pHBx. Next, HBx-FLAG was linked to EGFP by the internal ribosome entry site resulting in plasmid pHBxE. The transactivation effect of HBx-flag on cytomegalovirus (CMV) promoter was verified by EGFP expression using fluorescence quantitation and qPCR. Furthermore, the transactivation ability of the HBx gene was quantified by flow cytometry. Finally, this assay system was tested by known regulators of HBx including DDB1, ID1, and P53. As expected, the GFP reporter level in 293T cells changed with the increasing of HBx regulators. Furthermore, the system modeling the function of transactivation repressor in Hep3B, a HBV-integrated cell line. CONCLUSION: Collectively, the GFP-based reporter system provides a rapid and accurate approach for analyzing transactivation ability of HBx.
Subject(s)
Cytomegalovirus/genetics , Promoter Regions, Genetic/drug effects , Trans-Activators/metabolism , Transcriptional Activation , Cell Line , Genes, Reporter , Green Fluorescent Proteins/analysis , Humans , Staining and Labeling/methods , Viral Regulatory and Accessory ProteinsABSTRACT
OBJECTIVES: To improve the efficiency, reproducibility and consistency of the PEI-based transfection method that is often used in preparation of recombinant lentiviral or retroviral vectors. RESULTS: The contributions to transfection efficiency of multi-factors including concentration of PEI or DNA, dilution buffer for PEI/DNA, manner to prepare PEI/DNA complexes, influence of serum, incubation time for PEI/DNA complexes, and transfection time were studied. Gentle mixing during the preparation of PEI/DNA transfection complexes is critical for a high transfection efficiency. PEI could be stored at room temperature or 4 °C, and most importantly, multigelation should be avoided. The transfection efficiency of the PEI-based new method in different types of cells, such as 293T, Cos-7, HeLa, HepG2, Hep3B, Huh7 and L02, was also higher than that of the previous method. After optimization, the titer of our lentiviral system or retroviral system produced by PEI-based new method was about 10- or 3-times greater than that produced by PEI-based previous method, respectively. CONCLUSION: We provide a rapid and efficient PEI-based method for preparation of recombinant lentiviral or retroviral vectors which is useful for making iPS cells as well as transduction of primary cell cultures.
Subject(s)
Genetic Vectors/chemistry , Lentivirus/genetics , Polyethyleneimine/chemistry , Retroviridae/genetics , Transduction, Genetic/methods , Transfection/methods , Animals , Cell Line , HumansABSTRACT
The separation mechanisms for palonosetron (PALO) stereoisomers in MEKC using sodium cholate (SC) as surfactant and chiral selector have been studied, in a wide range of concentrations below and above the CMC. It was found that SC micelles only provide chirally selective recognition for 3a carbon chiral center in PALO molecules. The resolution of the configurations of 2 carbon chiral center is achieved by the difference of mobility in continuous phase. A schematic diagram depicting the separation mechanisms and the corresponding migration orders among all of four stereoisomers was proposed based on the measured separation parameters. A MEKC method to achieve the complete separation of four stereoisomers in very short time using a very low chiral selector concentration, instead of high concentrations generally considered, was developed based on the understanding of the mechanisms.
Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Quinuclidines/chemistry , Quinuclidines/isolation & purification , Palonosetron , Sodium Cholate/chemistry , Stereoisomerism , Surface-Active Agents/chemistryABSTRACT
The effect of ten water-soluble organic solvents on MEKC separation of palonosetron hydrochloride (PALO) stereoisomers using sodium cholate (SC) as chiral selector has been studied. The first chiral CE method fit for the analysis of unwanted PALO distomers (enantiomeric impurities) of low concentrations in the presence of high concentration of the main eutomer has been developed, based on solvent-modified MEKC mode. It was found that methanol provides the best separation among the solvents tested. And an SC concentration of 30 mM is proper to provide good resolutions in shorter time and adequate sample capacity, instead of 70 mM as previously reported. The developed method can be used to analyze unwanted PALO distomers of a few micrograms per milliliter in the presence of the main eutomer with a concentration as high as 1.0 mg/mL.
ABSTRACT
During acute or chronic hepatitis B virus (HBV) infection, the virus can invade the male reproductive system, pass through the blood-testis barrier and integrate into the germ line, resulting in abnormal spermatozoa. However, the pathway remains unclear. The asialoglycoprotein receptor (ASGR), a potential receptor for HBV, is mainly distributed in hepatocytes. We have examined the distribution of ASGR in human testis and found it in the seminiferous tubules and interstitial region but its enrichment in human testis is much lower than that in liver. By multiple immunoenzyme histochemistry staining, ASGR was precisely co-localized with vimentin (Sertoli cell marker) but not proliferating cell nuclear antigen (spermatogonial cell marker) in testis tissue. ASGR was expressed in human Leydig cells, stromal cells in the seminiferous tubules and Sertoli cells but seldom in spermatogonial cells. Therefore, ASGR could provide HBV with access to the luminal compartment of human testis. The mechanism by which HBV invades germ cells remains unknown.
Subject(s)
Asialoglycoprotein Receptor/metabolism , Testis/metabolism , Asialoglycoprotein Receptor/genetics , Biomarkers/metabolism , Blotting, Western , Gene Expression Regulation , Humans , Immunohistochemistry , In Situ Hybridization , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seminiferous Tubules/cytology , Seminiferous Tubules/metabolism , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spermatogonia/cytology , Spermatogonia/metabolism , Testis/cytologyABSTRACT
Based on sodium cholate as chiral selector, four stereoisomers of palonosetron hydrochloride, i.e. PALO (3aS, 2S), PALO (3aR, 2R), PALO (3aS, 2R), and PALO (3aR, 2S), have been separated by five EKC modes, i.e. MEKC, solvent-modified MEKC, cosurfactant-modified MEKC, MEEKC, and MEEKC without cosurfactant. The performances of different modes were compared. The migration order and its change with experimental conditions were elucidated. In every mode studied, the migration orders in each enantiomeric pair were (3aS, 2S), (3aR, 2R) and (3aS, 2R), (3aR, 2S), respectively, determined by the selectivity of chiral selector (chromatographic mechanism). Enantiomeric pair (3aS, 2S), (3aR, 2R) was eluted before enantiomeric pair (3aS, 2R), (3aR, 2S) due to mobility difference (electrophoretic mechanism). For the separation between (3aR, 2R) and (3aS, 2R), the second enantiomer of the first pair and the first enantiomer of the second pair, two mechanisms gave opposite migration orders according to the measured selectivity and mobility data. Therefore, three different migration orders were observed at different conditions, depending on the relative strength of two effects.
Subject(s)
Isoquinolines/isolation & purification , Quinuclidines/isolation & purification , Serotonin Antagonists/isolation & purification , Chromatography, Micellar Electrokinetic Capillary/methods , Palonosetron , Sodium Cholate/chemistry , StereoisomerismABSTRACT
Radioresistance is responsible for treatment failure after radiotherapy in localized prostate cancer, while prostate cancer stem cells promote radioresistance by preferential activation of the DNA damage response. Chk1 inhibition has been shown to sensitize many tumor cells to radiation. However, whether Chk1 inhibition can potentiate the cytotoxic effects of radiation on prostate cancer stem cells remains to be elucidated. In this study, CD133+CD44+ cells were isolated using microbeads and were found to possess cancer stem cell properties. Using shRNA, Chk1 was knocked down in the sorted CD133+CD44+ cells. Our results demonstrated that Chk1 knockdown abrogated the radiation-induced G2/M arrest, inhibited DNA damage repair and promoted premature mitosis, leading to increased apoptosis in the radiated sorted CD133+CD44+ cells. Moreover, these effects were accompanied by caspase-2 activation and the inactivation of phosphorylated Cdc25C and Cdc2. Our results suggest that Chk1 knockdown increases the radiosensitivity of CD133+CD44+ prostate cancer stem cells. Chk1 knockdown in prostate cancer stem cells may be an effective therapeutic strategy against prostate cancer.
Subject(s)
DNA Repair/radiation effects , Neoplastic Stem Cells/radiation effects , Prostatic Neoplasms/genetics , Protein Kinases/genetics , Radiation Tolerance/genetics , AC133 Antigen , Antigens, CD , Apoptosis/radiation effects , CDC2 Protein Kinase , Caspase 2/metabolism , Cell Cycle Checkpoints/radiation effects , Cell Line, Tumor , Checkpoint Kinase 1 , Cyclin B/biosynthesis , Cyclin-Dependent Kinases , Glycoproteins , Humans , Hyaluronan Receptors , Male , Mitosis/radiation effects , Peptides , Protein Kinases/metabolism , RNA Interference , RNA, Small Interfering , cdc25 Phosphatases/biosynthesisABSTRACT
Eight l-tartrates and a d-tartrate with different alcohol moieties were used as chiral oils to prepare chiral microemulsions, which were utilized in conjunction with borate buffer to separate the enantiomers of beta-blockers or structurally related compounds by the chiral microemulsion electrokinetic chromatography (MEEKC) method. Among them, six were found to have a relatively good chiral separation performance and their chiral recognition effect in terms of both enantioselectivity and resolution increases linearly with the number of carbon atoms in the alkyl group of alcohol moiety. The tartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, provide similar enantioseparations. The trend was elucidated according to the changes in the difference of the steric matching between the molecules of two enantiomers and chiral selector. Furthermore, it was demonstrated for the first time that a water insoluble solid compound, di-i-butyl l-tartrate (mp. 73.5 degrees C), can be used as an oil to prepare a stable microemulsion to be used in the chiral MEEKC successfully. And a critical effect of the microemulsion for chiral separation, which has never been reported before, was found in this experiment, namely providing a hydrophobic environment to strengthen the interactions between the chiral selector and enantiomers.