Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 21(11): 1444-1455, 2020 11.
Article in English | MEDLINE | ID: mdl-32958928

ABSTRACT

Acquisition of a lipid-laden phenotype by immune cells has been defined in infectious diseases and atherosclerosis but remains largely uncharacterized in cancer. Here, in breast cancer models, we found that neutrophils are induced to accumulate neutral lipids upon interaction with resident mesenchymal cells in the premetastatic lung. Lung mesenchymal cells elicit this process through repressing the adipose triglyceride lipase (ATGL) activity in neutrophils in prostaglandin E2-dependent and -independent manners. In vivo, neutrophil-specific deletion of genes encoding ATGL or ATGL inhibitory factors altered neutrophil lipid profiles and breast tumor lung metastasis in mice. Mechanistically, lipids stored in lung neutrophils are transported to metastatic tumor cells through a macropinocytosis-lysosome pathway, endowing tumor cells with augmented survival and proliferative capacities. Pharmacological inhibition of macropinocytosis significantly reduced metastatic colonization by breast tumor cells in vivo. Collectively, our work reveals that neutrophils serve as an energy reservoir to fuel breast cancer lung metastasis.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Lipid Metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mesenchymal Stem Cells/metabolism , Neutrophils/metabolism , Animals , Biomarkers , Cell Proliferation , Disease Progression , Endocytosis , Female , Fluorescent Antibody Technique , Humans , Mice , Neoplasm Metastasis , Neutrophils/ultrastructure
2.
Immunity ; 55(8): 1483-1500.e9, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35908547

ABSTRACT

Primary tumors are drivers of pre-metastatic niche formation, but the coordination by the secondary organ toward metastatic dissemination is underappreciated. Here, by single-cell RNA sequencing and immunofluorescence, we identified a population of cyclooxygenase 2 (COX-2)-expressing adventitial fibroblasts that remodeled the lung immune microenvironment. At steady state, fibroblasts in the lungs produced prostaglandin E2 (PGE2), which drove dysfunctional dendritic cells (DCs) and suppressive monocytes. This lung-intrinsic stromal program was propagated by tumor-associated inflammation, particularly the pro-inflammatory cytokine interleukin-1ß, supporting a pre-metastatic niche. Genetic ablation of Ptgs2 (encoding COX-2) in fibroblasts was sufficient to reverse the immune-suppressive phenotypes of lung-resident myeloid cells, resulting in heightened immune activation and diminished lung metastasis in multiple breast cancer models. Moreover, the anti-metastatic activity of DC-based therapy and PD-1 blockade was improved by fibroblast-specific Ptgs2 deletion or dual inhibition of PGE2 receptors EP2 and EP4. Collectively, lung-resident fibroblasts reshape the local immune landscape to facilitate breast cancer metastasis.


Subject(s)
Lung Neoplasms , Receptors, Prostaglandin E, EP2 Subtype , Cyclooxygenase 2/genetics , Fibroblasts/pathology , Humans , Lung/pathology , Lung Neoplasms/pathology , Receptors, Prostaglandin E, EP4 Subtype/genetics , Tumor Microenvironment
3.
Am J Physiol Endocrinol Metab ; 326(5): E588-E601, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477875

ABSTRACT

In rodents, loss of estradiol (E2) reduces brown adipose tissue (BAT) metabolic activity. Whether E2 impacts BAT activity in women is not known. BAT oxidative metabolism was measured in premenopausal (n = 27; 35 ± 9 yr; body mass index = 26.0 ± 5.3 kg/m2) and postmenopausal (n = 25; 51 ± 8 yr; body mass index = 28.0 ± 5.0 kg/m2) women at room temperature and during acute cold exposure using [11C]acetate with positron emission tomography coupled with computed tomograph. BAT glucose uptake was also measured during acute cold exposure using 2-deoxy-2-[18F]fluoro-d-glucose. To isolate the effects of ovarian hormones from biological aging, measurements were repeated in a subset of premenopausal women (n = 8; 40 ± 4 yr; BMI = 28.0 ± 7.2 kg/m2) after 6 mo of gonadotropin-releasing hormone agonist therapy to suppress ovarian hormones. At room temperature, there was no difference in BAT oxidative metabolism between premenopausal (0.56 ± 0.31 min-1) and postmenopausal women (0.63 ± 0.28 min-1). During cold exposure, BAT oxidative metabolism (1.28 ± 0.85 vs. 0.91 ± 0.63 min-1, P = 0.03) and net BAT glucose uptake (84.4 ± 82.5 vs. 29.7 ± 31.4 nmol·g-1·min-1, P < 0.01) were higher in premenopausal than postmenopausal women. In premenopausal women who underwent gonadotropin-releasing hormone agonist, cold-stimulated BAT oxidative metabolism was reduced to a similar level (from 1.36 ± 0.66 min-1 to 0.91 ± 0.41 min-1) to that observed in postmenopausal women (0.91 ± 0.63 min-1). These results provide the first evidence in humans that reproductive hormones are associated with BAT oxidative metabolism and suggest that BAT may be a target to attenuate age-related reduction in energy expenditure and maintain metabolic health in postmenopausal women.NEW & NOTEWORTHY In rodents, loss of estrogen reduces brown adipose tissue (BAT) activity. Whether this is true in humans is not known. We found that BAT oxidative metabolism and glucose uptake were lower in postmenopausal compared to premenopausal women. In premenopausal women who underwent ovarian suppression to reduce circulating estrogen, BAT oxidative metabolism was reduced to postmenopausal levels. Thus the loss of ovarian function in women leads to a reduction in BAT metabolic activity independent of age.


Subject(s)
Adipose Tissue, Brown , Fluorodeoxyglucose F18 , Humans , Female , Adipose Tissue, Brown/metabolism , Fluorodeoxyglucose F18/metabolism , Energy Metabolism , Glucose/metabolism , Positron-Emission Tomography , Estrogens/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Cold Temperature , Thermogenesis
4.
Pediatr Res ; 94(3): 1035-1043, 2023 09.
Article in English | MEDLINE | ID: mdl-36899125

ABSTRACT

BACKGROUND: The immunogenicity and safety of a booster dose of tetanus toxoid-conjugate quadrivalent meningococcal vaccine (MenACYW-TT), alone or co-administered with MenB vaccine, were assessed in healthy 13-25-year olds who received MenACYW-TT or a CRM-conjugate vaccine (MCV4-CRM) 3-6 years earlier. METHODS: This phase IIIb open-label trial (NCT04084769) evaluated MenACYW-TT-primed participants, randomized to receive MenACYW-TT alone or with a MenB vaccine, and MCV4-CRM-primed participants who received MenACYW-TT alone. Functional antibodies against serogroups A, C, W and Y were measured using human complement serum bactericidal antibody assay (hSBA). The primary endpoint was vaccine seroresponse (post-vaccination titers ≥1:16 if pre-vaccination titers <1:8; or a ≥4-fold increase if pre-vaccination titers ≥1:8) 30 days post booster. Safety was evaluated throughout the study. RESULTS: The persistence of the immune response following primary vaccination with MenACYW-TT was demonstrated. Seroresponse after MenACYW-TT booster was high regardless of priming vaccine (serogroup A: 94.8% vs 93.2%; C: 97.1% vs 98.9%; W: 97.7% vs 98.9%; and Y; 98.9% vs 100% for MenACWY-TT-primed and MCV4-CRM-primed groups, respectively). Co-administration with MenB vaccines did not affect MenACWY-TT immunogenicity. No vaccine-related serious adverse events were reported. CONCLUSIONS: MenACYW-TT booster induced robust immunogenicity against all serogroups, regardless of the primary vaccine received, and had an acceptable safety profile. IMPACT: A booster dose of MenACYW-TT induces robust immune responses in children and adolescents primed with MenACYW-TT or another MCV4 (MCV4-DT or MCV4-CRM), respectively. Here, we demonstrate that MenACYW-TT booster 3-6 years after primary vaccination induced robust immunogenicity against all serogroups, regardless of the priming vaccine (MenACWY-TT or MCV4-CRM), and was well tolerated. Persistence of the immune response following previous primary vaccination with MenACYW-TT was demonstrated. MenACYW-TT booster with MenB vaccine co-administration did not affect MenACWY-TT immunogenicity and was well tolerated. These findings will facilitate the provision of broader protection against IMD particularly in higher-risk groups such as adolescents.


Subject(s)
Meningococcal Vaccines , Neisseria meningitidis , Child , Humans , Adult , Adolescent , Tetanus Toxoid , Antibodies, Bacterial , Vaccination , Meningococcal Vaccines/adverse effects , Vaccines, Conjugate
5.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361887

ABSTRACT

In Brassicaceae, the papillary cells of the stigma are the primary site of the self-incompatibility (SI) responses. SI preserves the genetic diversity by selectively rejecting irrelevant or incompatible pollen, thus promoting cross fertilization and species fitness. Mechanisms that regulate SI responses in Brassica have been studied mainly on the mature stigma that often undermines how stigma papillary cells attain the state of SI during development. To understand this, we integrated PacBio SMRT-seq with Illumina RNA-seq to construct a de novo full-length transcriptomic database for different stages of stigma development in ornamental kale. A total of 48,800 non-redundant transcripts, 31,269 novel transcripts, 24,015 genes, 13,390 alternative splicing, 22,389 simple sequence repeats, 21,816 complete ORF sequences, and 4591 lncRNAs were identified and analyzed using PacBio SMRT-seq. The Illumina RNA-seq revealed 15,712 differentially expressed genes (DEGs) and 8619 transcription factors. The KEGG enrichment analysis of 4038 DEGs in the "incompatibility" group revealed that the flavonoid and fatty acid biosynthesis pathways were significantly enriched. The cluster and qRT-PCR analysis indicated that 11 and 14 candidate genes for the flavonoid and fatty acid biosynthesis pathways have the lowest expression levels at stigma maturation, respectively. To understand the physiological relevance of the downregulation of fatty acid biosynthesis pathways, we performed inhibitor feeding assays on the mature stigma. The compatible pollination response was drastically reduced when mature stigmas were pre-treated with a fatty acid synthase inhibitor. This finding suggested that fatty acid accumulation in the stigmas may be essential for compatible pollination and its downregulation during maturity must have evolved as a support module to discourage the mounting of self-incompatible pollen.


Subject(s)
Brassica , Brassica/genetics , Brassica/metabolism , Pollination/genetics , Pollen/genetics , Flavonoids/metabolism , Fatty Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Aquac Nutr ; 2022: 8348000, 2022.
Article in English | MEDLINE | ID: mdl-37197095

ABSTRACT

Effects of dietary niacin on the growth performance, intestinal histomorphology, body composition, and antioxidant capacity were investigated in the present study to determine the optimum requirement of niacin for juvenile Eriocheir sinensis. All 360 crabs (initial average weight 1.14 ± 0.04 g) were randomly divided into 6 groups with 3 replicates in each group and 20 crabs in each replicate. Crabs were fed with the control diet (0.89 mg/kg) or niacin-supplemented diets (170.54 mg/kg, 347.05 mg/kg, 587.59 mg/kg, 784.85 mg/kg, and 1248.86 mg/kg) for 12 weeks (named as G1, G2, G3, G4, G5, and G6, respectively). The results showed that appropriate dietary niacin (above 347.05 mg/kg) significantly increased the weight gain rate (WGR) and specific growth rate (SGR) (p < 0.05), but did not affect the survival rate (SR), feed conversion ratio (FCR), daily feeding rate (DFR), and molting frequency (MF) of crabs (p > 0.05). The niacin content in the hepatopancreas of crabs in G1 and G2 was significantly lower than that of the other four groups (p < 0.05). Moreover, dietary niacin significantly affected the intestinal histomorphology of crabs, including the number of folds (NF), height of folds (HF), height of microvillus (HMV), and thickness of muscularis (TM) (p < 0.05). Additionally, moderate dietary niacin levels significantly affected the nonspecific immune responses of crabs, by improving the activity of catalase (CAT), glutathione s-transferase (GST), glutathione peroxidase (GSH-Px), and total superoxide dismutase (T-SOD) (p < 0.05). Based on the broken-line model analysis of SGR against dietary niacin level, the dietary niacin requirement of juvenile crabs was suggested to be 419.4 mg/kg.

7.
Nucleic Acids Res ; 47(10): 5074-5085, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31162603

ABSTRACT

In microorganisms, a number of metalloproteins including PerR are found to regulate gene expression in response to environmental reactive oxygen species (ROS) changes. However, discovery of similar regulatory mechanisms remains elusive within mammalian cells. As an antioxidant metalloenzyme that maintains intracellular ROS homeostasis, copper zinc superoxide dismutase (SOD1) has high affinity for DNA in solution and in cells. Here, we explored the regulatory roles of SOD1 in the expression of genes in response to ROS changes within mammalian cells. SOD1-occupied DNA sites with distinct sequence preference were identified. Changing ROS levels both were found to impact DNA-SOD1 interactions in solution and within HeLa cells. GGA was one of the base triplets that had direct contact with SOD1. DNA-SOD1 interactions were observed to regulate the ROS-responsive expression of functional genes including oncogenes and amyotrophic lateral sclerosis-linked genes in transcriptional phases. Our results confirm another function of SOD1, acting as a H2O2-responsive regulatory protein in the expression of numerous mammalian genes.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation , Hydrogen Peroxide/metabolism , Superoxide Dismutase-1/metabolism , Base Sequence , Binding Sites/genetics , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HeLa Cells , Humans , Intracellular Space/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Domains , RNA Interference , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics
8.
Org Biomol Chem ; 18(35): 6829-6839, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32761021

ABSTRACT

The development of protein-based therapeutics faces many challenges, for example, carrier-dependence, safety concerns, endocytosis-dependence, and uncertain in vivo therapeutic outcomes. Small molecules are rarely used for intracellular organelle-targeting and disease tissue-specific carrier-independent delivery of therapeutic proteins. Here, we report that rhodamine B, after modification with proteins, is able to guide carrier-free delivery into mitochondria and tissue-dependent distributions of functional proteins through organic cation transporters (OCTs). The enrichment of the modified catalase in the cancer tissue efficiently suppresses xenograft human lung tumor in mice. This carrier-free delivery platform of proteins may emerge as a simple yet powerful approach for cancer treatment.


Subject(s)
Rhodamines
10.
J Sep Sci ; 41(4): 868-876, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29193775

ABSTRACT

In this study, a green, rapid, and simple method, ionic-liquid-magnetized stirring bar liquid-phase microextraction was developed for the determination of naphthoquinones, including shikonin and ß,ß'-dimethylacrylshikonin, in Zicao. This method permits active magnetic stirring, extraction, and pre-enrichment in a single device simultaneously, so the extract is conveniently collected. The analytes were extracted from the sample to ionic liquid-magnetized stirring bar, then the analyte-adsorbed magnetized stirring bar can be readily isolated from the sample solution by a magnet. The key experimental parameters were investigated and optimized, including the type and volume of ionic liquid, extraction time, salt concentration, stirring speed, and pH. The recoveries were in the range of 89.47-102.38%, and good reproducibilities were obtained with relative standard deviation below 5.36%. Compared with the conventional extraction methods, the proposed method is quicker and more effective.


Subject(s)
Drugs, Chinese Herbal/chemistry , Ionic Liquids/chemistry , Liquid Phase Microextraction , Naphthoquinones/analysis , Boraginaceae/chemistry , Chromatography, High Pressure Liquid , Lithospermum/chemistry , Magnetic Fields , Molecular Conformation
11.
Insect Sci ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39279283

ABSTRACT

Bombyx mori ELAV-like-1 (BmEL-1) and B. mori ELAV-like-2 (BmEL-2) are 2 members of the ELAV-like family of RNA-binding proteins. Mutations in Bmel-1 and Bmel-2 resulted in 5.8% and 28.5% decreases in larval weight on the 3rd day of the 5th instar larva (L5D3), respectively. Triglycerides (TG) are the most important energy resource and are the main component of neutral fat (NF) in animals. To investigate the role of Bmelav-like genes in the synthesis and decomposition of TG, transcriptomic, and metabolic analyses were performed on the whole bodies on the 1st day of the 2nd instar larvae (L2D1) and on fat bodies on L5D3 of Bmel-1- and Bmel-2- mutants, respectively. As compared with the control silkworm, differentially expressed genes generated in both mutants were mainly enriched in lysine degradation, fatty acid (FA) metabolism, and unsaturated FAs biosynthesis. The diglyceride and phosphatide contents were significantly lower in Bmel-1- and Bmel-2- fat bodies than those of the control group. Consistently, the NF content of both mutants' fat bodies were reduced by 50% and 60%, respectively. BmEL-2 positively regulates BmAGPATγ (B. mori 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma, LOC101741736) and BmFaF2 (B. mori fatty acid synthetase-associated factor 2, LOC101739090) expression by binding to the specific regions of their 3' untranslated regions in BmN cells. This study suggests that BmEL-2 may be an important regulator of BmAGPATγ and BmFAF2 expression and thereby participates in TG metabolism in the silkworm fat body.

12.
Chemistry ; 19(25): 8073-7, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23649731

ABSTRACT

Sieve and take: A biomimetic strategy was designed to fabricate two-dimensional silica sieve plates (SSP) by use of catanionic surfactants as composite template and L-tartrate with hydroxyl and carboxyl groups as regulator. Tartrate was found to combine two capabilities in the formation of SSP structures: the connection of adjacent silica structures through H bonding and the separation of adjacent structures through electrostatic repulsion.

13.
J Sep Sci ; 36(21-22): 3527-33, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24106035

ABSTRACT

In this paper, a magnetic bar microextraction was developed to extract schisandrin A, schisantherin A, and deoxyschizandrin from Wuweizi. The analytes were determined by HPLC. A stainless-steel wire was inserted into the hollow of the hollow fiber to make the magnetic bar. The bar can be used to stir the extraction system and extract the analytes, and was isolated from the extract system by magnetic force. Several experimental parameters, including type and volume of extraction solvent, the number of magnetic bars, extraction temperature and time, stirring speed and NaCl concentration were investigated and optimized. The LODs for schisandrin A, schisantherin A, and deoxyschizandrin were 0.14, 0.06, and 0.10 g/mL, respectively. The recoveries were in the range of 70.90-106.67% and the RSDs were < 8.84%. Compared with ultrasound-assisted and Soxhlet extraction, when the present method was applied, the extraction time was shorter, the sample amount was smaller, and the consumption of organic solvent was lower.


Subject(s)
Lignans/analysis , Liquid Phase Microextraction/methods , Schisandra/chemistry , Chromatography, High Pressure Liquid , Magnetics
14.
J Sep Sci ; 36(3): 585-92, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23303586

ABSTRACT

A green and simple method, ionic liquid-based microwave-assisted surfactant-improved dispersive liquid-liquid microextraction and derivatization was developed for the determination of aminoglycosides in milk samples. Nonionic surfactant Triton X-100 and ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate were used as the disperser and extraction solvent, respectively. Extraction, preconcentration, and derivatization of aminoglycosides were carried out in a single step. Several experimental parameters, including type and volume of extraction solvent, type and concentration of surfactant, microwave power and irradiation time, concentration of derivatization reagent, and pH value and volume of buffer were investigated and optimized. Under the optimum experimental conditions, the linearities for determining the analytes were in the range 0.4-10.0 ng/mL for tobramycin, 1.0-25.0 ng/mL for neomycin, and 2.0-50.0 ng/mL for gentamicin, with the correlation coefficients ranging from 0.9991 to 0.9998. The LODs for the analytes were between 0.11 and 0.50 ng/mL. The present method was applied to the analysis of different milk samples, and the recoveries of aminoglycosides obtained were in the range 96.4-105.4% with the RSDs lower than 5.5%. The results showed that the present method was a rapid, convenient, and environmentally friendly method for the determination of aminoglycosides in milk samples.


Subject(s)
Aminoglycosides/isolation & purification , Anti-Bacterial Agents/isolation & purification , Ionic Liquids/chemistry , Liquid Phase Microextraction/methods , Milk/chemistry , Aminoglycosides/analysis , Animals , Anti-Bacterial Agents/analysis , Chromatography, High Pressure Liquid , Food Contamination/analysis , Microwaves , Surface-Active Agents/chemistry
15.
Front Plant Sci ; 14: 1249122, 2023.
Article in English | MEDLINE | ID: mdl-38259941

ABSTRACT

Betula platyphylla, belonging to the cold-specialized lineage Betulaceae, exhibits a unique reproductive strategy where staminate catkins emerge in the first summer and undergo an overwintering process, culminating in flowering in the following year. However, the underlying regulatory mechanism remains unclear. In this study, we investigated the male germline development of B. platyphylla in four distinct stages: microsporocytes in Oct. (S1), uninuclear microspores from Dec. (S2) to Mar. of the following year (S3), and bicellular microspores in Apr. (S4). We performed RNA sequencing on mature pollen and the four stages of staminate catkins. Using weighted gene co-expression network analysis (WGCNA), we identified five highly correlated gene modules with distinct expression profiles. These modules exhibited strong correlations with sugar metabolism, cell cycle, flowering, and cell wall dynamics, highlighting their dynamic roles during male germline developmental stages. During the overwintering process, we observed that the expression of transcription factors such as BpDUO1 and BpAMS at the appropriate developmental stages, suggests their significant roles in male germline development. The expression patterns of BpFLC and BpFT suggest their potential involvement in temperature perception during male reproductive development. These findings offer valuable insights into the reproductive success of plants adapting to cold environments.

16.
Sci Immunol ; 8(80): eadd5204, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36800412

ABSTRACT

Neutrophils, the most abundant innate immune cells, function as crucial regulators of the adaptive immune system in diverse pathological conditions, including metastatic cancer. However, it remains largely unknown whether their immunomodulatory functions are intrinsic or acquired within the pathological tissue environment. Here, using mouse models of metastatic breast cancer in the lungs, we show that, although neutrophils isolated from bone marrow (BM) or blood are minimally immunosuppressive, lung-infiltrating neutrophils are robustly suppressive of both T cells and natural killer (NK) cells. We found that this tissue-specific immunosuppressive capacity of neutrophils exists in the steady state and is reinforced by tumor-associated inflammation. Acquisition of potent immunosuppression activity by lung-infiltrating neutrophils was endowed by the lung-resident stroma, specifically CD140a+ mesenchymal cells (MCs) and largely via prostaglandin-endoperoxide synthase 2 (PTGS2), the rate-limiting enzyme for prostaglandin E2 (PGE2) biosynthesis. MC-specific deletion of Ptgs2 or pharmacological inhibition of PGE2 receptors reversed lung neutrophil-mediated immunosuppression and mitigated lung metastasis of breast cancer in vivo. These lung stroma-targeting strategies substantially improved the therapeutic efficacy of adoptive T cell-based immunotherapy in treating metastatic disease in mice. Collectively, our results reveal that the immunoregulatory effects of neutrophils are induced by tissue-resident stroma and that targeting tissue-specific stromal factors represents an effective approach to boost tissue-resident immunity against metastatic disease.


Subject(s)
Lung Neoplasms , Neutrophils , Animals , Mice , Cyclooxygenase 2 , Lung/pathology , Killer Cells, Natural , Melanoma, Cutaneous Malignant
17.
J Photochem Photobiol B ; 238: 112624, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521315

ABSTRACT

Defects in mitochondrial proteostasis contribute to many disorders, including cancer, neurodegeneration, and metabolic and genetic diseases. A strategy aimed at restoring the damaged mitochondrial proteostasis is the mitochondrion-targeting and carrier-free delivery of exogenous functional proteins that can replace the endogenous dysfunctional proteins. The modification of a protein with a photolabile protecting group (PPG, i.e., photocage group) can be activated in situ by response to illumination, leading to release of the protein from its photocage. Here, the Cys and peptide photocages with coumarin were first prepared and characterized for proof of concept. Then, we designed a pair of photocage groups PPG-RhB and PPG-TPP using coumarin and mitochondrion-targeting Rhodamine B (RhB) and triphenylphosphine (TPP), and another pair of organelle-nontarget photocage groups Br-PPG and NO2-PPG for comparison. The proteins modified with these two pairs of photocage groups undergo photolysis in solutions, and can penetrate cell membrane toward their destinations in the carrier-free fashions. The intracellular protein photocages are in situ activated by illumination at 405 nm, and the proteins are released from their photocages in mitochondria and cytoplasm, respectively. This strategy of light-responsive and carrier-free cellular delivery enables mitochondrial and cytoplasmic accumulation of exogenous proteins.


Subject(s)
Mitochondria , Organelles , Mitochondria/metabolism , Photolysis , Organelles/metabolism , Peptides/metabolism , Coumarins
18.
Front Immunol ; 13: 759188, 2022.
Article in English | MEDLINE | ID: mdl-35126389

ABSTRACT

Intracellular cytokine staining (ICS) is a widely employed ex vivo method for quantitative determination of the activation status of immune cells, most often applied to T cells. ICS test samples are commonly prepared from animal or human tissues as unpurified cell mixtures, and cell-specific cytokine signals are subsequently discriminated by gating strategies using flow cytometry. Here, we show that when ICS samples contain Ly6G+ neutrophils, neutrophils are ex vivo activated by an ICS reagent - phorbol myristate acetate (PMA) - which leads to hydrogen peroxide (H2O2) release and death of cytokine-expressing T cells. This artifact is likely to result in overinterpretation of the degree of T cell suppression, misleading immunological research related to cancer, infection, and inflammation. We accordingly devised easily implementable improvements to the ICS method and propose alternative methods for assessing or confirming cellular cytokine expression.


Subject(s)
Biomarkers , Cytokines/metabolism , Lymphocyte Activation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Artifacts , Breast Neoplasms , Cell Line , Disease Models, Animal , Female , Flow Cytometry/methods , Flow Cytometry/standards , Humans , Hydrogen Peroxide/metabolism , Intracellular Space , Leukocyte Count , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Models, Biological , Neutrophils/metabolism , Neutrophils/pathology
19.
Cell Metab ; 34(12): 1960-1976.e9, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476935

ABSTRACT

While the distant organ environment is known to support metastasis of primary tumors, its metabolic roles in this process remain underdetermined. Here, in breast cancer models, we found lung-resident mesenchymal cells (MCs) accumulating neutral lipids at the pre-metastatic stage. This was partially mediated by interleukin-1ß (IL-1ß)-induced hypoxia-inducible lipid droplet-associated (HILPDA) that subsequently represses adipose triglyceride lipase (ATGL) activity in lung MCs. MC-specific ablation of the ATGL or HILPDA genes in mice reinforced and reduced lung metastasis of breast cancer respectively, suggesting a metastasis-promoting effect of lipid-laden MCs. Mechanistically, lipid-laden MCs transported their lipids to tumor cells and natural killer (NK) cells via exosome-like vesicles, leading to heightened tumor cell survival and proliferation and NK cell dysfunction. Blockage of IL-1ß, which was effective singly, improved the efficacy of adoptive NK cell immunotherapy in mitigating lung metastasis. Collectively, lung MCs metabolically regulate tumor cells and anti-tumor immunity to facilitate breast cancer lung metastasis.


Subject(s)
Killer Cells, Natural , Lung Neoplasms , Animals , Mice , Lung , Lipids
20.
Small Methods ; 6(2): e2101402, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35174999

ABSTRACT

Fabrication of a highly porous sulfur host and using excess electrolyte is a common strategy to enhance sulfur utilization. However, flooded electrolyte limits the practical energy density of Li-S pouch cells. In this study, a novel Fe0.34 Co0.33 Ni0.33 S2 (FCN) is proposed as host for sulfur to realize Ah-level Li-S full cells demonstrating excellent electrochemical performances under 2 µL mg-1 lean electrolyte conditions. Moreover, Kelvin probe force microscopy shows that the FCN surface contains positive charge with a potential of ≈70 mV, improving the binding of polysulfides through Lewis acid base interaction. In particular, the FCN@S possesses inherent electrochemical activity of simultaneous anionic and cationic redox for lithium storage in the voltage window of 1.8-2.1 V, which additionally contributes to the specific capacity. Due to the low carbon content (≈10 wt%), the sulfur loading is as high as ≈6 mg cm-2 , approaching an outstanding energy density of 394.9 and 267.2 Wh kg-1 at the current density of 1.5 and 4 mA cm-2 , respectively. Moreover, after 60 cycles at 1.5 mA cm-2 , the pouch cell still retains an energy of 300.2 Wh kg-1 . This study represents a milestone in the practical applications of high-energy Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL