Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.316
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39378879

ABSTRACT

The gut microbiota is crucial for human health, functioning as a complex adaptive system akin to a vital organ. To identify core health-relevant gut microbes, we followed the systems biology tenet that stable relationships signify core components. By analyzing metagenomic datasets from a high-fiber dietary intervention in type 2 diabetes and 26 case-control studies across 15 diseases, we identified a set of stably correlated genome pairs within co-abundance networks perturbed by dietary interventions and diseases. These genomes formed a "two competing guilds" (TCGs) model, with one guild specialized in fiber fermentation and butyrate production and the other characterized by virulence and antibiotic resistance. Our random forest models successfully distinguished cases from controls across multiple diseases and predicted immunotherapy outcomes through the use of these genomes. Our guild-based approach, which is genome specific, database independent, and interaction focused, identifies a core microbiome signature that serves as a holistic health indicator and a potential common target for health enhancement.

2.
Immunity ; 53(1): 204-216.e10, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32553276

ABSTRACT

Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.


Subject(s)
Dendritic Cells/immunology , Keratinocytes/metabolism , Phosphoprotein Phosphatases/deficiency , Polyamines/metabolism , Psoriasis/pathology , RNA/immunology , 3T3 Cells , Animals , Arginase/antagonists & inhibitors , Arginase/metabolism , Arginine/metabolism , Autoantigens/immunology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Disease Models, Animal , HEK293 Cells , HaCaT Cells , Humans , Interleukin-17/metabolism , Macaca fascicularis , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Phosphoprotein Phosphatases/genetics , Phosphorylation , Skin/pathology , Toll-Like Receptor 7/immunology
3.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38488018

ABSTRACT

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Zygote/metabolism , Cell Cycle/genetics , Cell Polarity/genetics , Embryo, Nonmammalian/metabolism
4.
Nat Methods ; 21(2): 301-310, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38167656

ABSTRACT

Light-sheet microscopes enable rapid high-resolution imaging of biological specimens; however, biological processes span spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality. Here, to overcome this limitation, we present smartLLSM, a microscope that incorporates artificial intelligence-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light-sheet microscopy (LLSM). We apply this approach to two unique processes: cell division and immune synapse formation. In each context, smartLLSM provides population-level statistics across thousands of cells and autonomously captures multicolor three-dimensional datasets or four-dimensional time-lapse movies of rare events at rates that dramatically exceed human capabilities. From this, we quantify the effects of Taxol dose on spindle structure and kinetochore dynamics in dividing cells and of antigen strength on cytotoxic T lymphocyte engagement and lytic granule polarization at the immune synapse. Overall, smartLLSM efficiently detects rare events within heterogeneous cell populations and records these processes with high spatiotemporal four-dimensional imaging over statistically significant replicates.


Subject(s)
Artificial Intelligence , Microscopy , Humans , Microscopy/methods , Imaging, Three-Dimensional/methods , Synapses
5.
Development ; 150(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37129004

ABSTRACT

Fluorescent protein (FP) tagging is a key method for observing protein distribution, dynamics and interaction with other proteins in living cells. However, the typical approach using overexpression of tagged proteins can perturb cell behavior and introduce localization artifacts. To preserve native expression, fluorescent proteins can be inserted directly into endogenous genes. This approach has been widely used in yeast for decades, and more recently in invertebrate model organisms with the advent of CRISPR/Cas9. However, endogenous FP tagging has not been widely used in mammalian cells due to inefficient homology-directed repair. Recently, the CRISPaint system used non-homologous end joining for efficient integration of FP tags into native loci, but it only allows C-terminal knock-ins. Here, we have enhanced the CRISPaint system by introducing new universal donors for N-terminal insertion and for multi-color tagging with orthogonal selection markers. We adapted the procedure for mouse embryonic stem cells, which can be differentiated into diverse cell types. Our protocol is rapid and efficient, enabling live imaging in less than 2 weeks post-transfection. These improvements increase the versatility and applicability of FP knock-in in mammalian cells.


Subject(s)
CRISPR-Cas Systems , Mouse Embryonic Stem Cells , Animals , Mice , CRISPR-Cas Systems/genetics , Proteins/genetics , Gene Knock-In Techniques , Gene Editing/methods , Mammals/genetics
6.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38409269

ABSTRACT

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Subject(s)
Cartilage , Chondrogenesis , Animals , Mice , Zinc Finger Protein GLI1/genetics , Chondrogenesis/genetics , Chondrocytes , Osteogenesis , Cell Differentiation
7.
EMBO Rep ; 25(10): 4465-4487, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39256595

ABSTRACT

Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated. O-GlcNAcylation, a dynamic post-translational modification of proteins, controls multiple critical biological processes including transcription, translation, and cell fate determination. Here, we report that Wnt3a either induces O-GlcNAcylation rapidly via the Ca2+-PKA-Gfat1 axis, or increases it in a Wnt-ß-catenin-dependent manner following prolonged stimulation. Importantly, we find O-GlcNAcylation indispensable for osteoblastogenesis both in vivo and in vitro. Genetic ablation of O-GlcNAcylation in the osteoblast-lineage diminishes bone formation and delays bone fracture healing in response to Wnt stimulation in vivo. Mechanistically, Wnt3a induces O-GlcNAcylation at Serine 174 of PDK1 to stabilize the protein, resulting in increased glycolysis and osteogenesis. These findings highlight O-GlcNAcylation as an important mechanism regulating Wnt-induced glucose metabolism and bone anabolism.


Subject(s)
Glycolysis , Osteoblasts , Osteogenesis , Wnt Signaling Pathway , Wnt3A Protein , Animals , Osteoblasts/metabolism , Mice , Wnt3A Protein/metabolism , Humans , Acylation , Protein Processing, Post-Translational , Cyclic AMP-Dependent Protein Kinases/metabolism , beta Catenin/metabolism , Glycosylation
8.
J Immunol ; 212(11): 1609-1620, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38768409

ABSTRACT

In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.


Subject(s)
HIV Infections , HIV-1 , Immune Reconstitution , Humans , HIV-1/immunology , HIV Infections/immunology , HIV Infections/drug therapy , Immune Reconstitution/immunology , Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology
9.
Proc Natl Acad Sci U S A ; 120(37): e2308685120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669374

ABSTRACT

Here, we provide mechanistic support for the involvement of the CYP9A subfamily of cytochrome P450 monooxygenases in the detoxification of host plant defense compounds and chemical insecticides in Spodoptera exigua and Spodoptera frugiperda. Our comparative genomics shows that a large cluster of CYP9A genes occurs in the two species but with significant differences in its contents, including several species-specific duplicates and substantial sequence divergence, both between orthologs and between duplicates. Bioassays of CRISPR-Cas9 knockouts of the clusters show that, collectively, the CYP9As can detoxify two furanocoumarin plant defense compounds (imperatorin and xanthotoxin) and insecticides representing three different chemotypes (pyrethroids, avermectins, and oxadiazines). However, in vitro metabolic assays of heterologously expressed products of individual genes show several differences between the species in the particular CYP9As with activities against these compounds. We also find that the clusters show tight genetic linkage with high levels of pyrethroid resistance in field strains of the two species. We propose that their divergent amplifications of the CYP9A subfamily have not only contributed to the development of the broad host ranges of these species over long evolutionary timeframes but also supplied them with diverse genetic options for evolving resistance to chemical insecticides in the very recent past.


Subject(s)
Insecticides , Xenobiotics , Peptide Biosynthesis , Secondary Metabolism , Cytochrome P-450 Enzyme System
10.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340793

ABSTRACT

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa , Transcription, Genetic , Type VI Secretion Systems , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Electrophoretic Mobility Shift Assay , Immunoprecipitation , Mutation , Promoter Regions, Genetic , Protein Binding , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Quorum Sensing , Second Messenger Systems , Two-Hybrid System Techniques , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism
11.
Plant J ; 117(2): 464-482, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37872890

ABSTRACT

Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.


Subject(s)
Glucosides , Phenols , Rhodiola , Rhodiola/genetics , Rhodiola/metabolism , Biosynthetic Pathways , Genome Size , Chromosomes , Evolution, Molecular
12.
PLoS Pathog ; 19(1): e1011110, 2023 01.
Article in English | MEDLINE | ID: mdl-36689471

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that predominantly causes nosocomial and community-acquired lung infections. As a member of ESKAPE pathogens, carbapenem-resistant P. aeruginosa (CRPA) compromises the limited therapeutic options, raising an urgent demand for the development of lead compounds against previously-unrecognized drug targets. Biotin is an important cofactor, of which the de novo synthesis is an attractive antimicrobial target in certain recalcitrant infections. Here we report genetic and biochemical definition of P. aeruginosa BioH (PA0502) that functions as a gatekeeper enzyme allowing the product pimeloyl-ACP to exit from fatty acid synthesis cycle and to enter the late stage of biotin synthesis pathway. In relative to Escherichia coli, P. aeruginosa physiologically requires 3-fold higher level of cytosolic biotin, which can be attributed to the occurrence of multiple biotinylated enzymes. The BioH protein enables the in vitro reconstitution of biotin synthesis. The repertoire of biotin abundance is assigned to different mouse tissues and/or organ contents, and the plasma biotin level of mouse is around 6-fold higher than that of human. Removal of bioH renders P. aeruginosa biotin auxotrophic and impairs its intra-phagosome persistence. Based on a model of CD-1 mice mimicking the human environment, lung challenge combined with systemic infection suggested that BioH is necessary for the full virulence of P. aeruginosa. As expected, the biotin synthesis inhibitor MAC13772 is capable of dampening the viability of CRPA. Notably, MAC13772 interferes the production of pyocyanin, an important virulence factor of P. aeruginosa. Our data expands our understanding of P. aeruginosa biotin synthesis relevant to bacterial infectivity. In particular, this study represents the first example of an extracellular pathogen P. aeruginosa that exploits biotin cofactor as a fitness determinant, raising the possibility of biotin synthesis as an anti-CRPA target.


Subject(s)
Biotin , Pseudomonas Infections , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Biosynthetic Pathways , Biotin/chemistry , Biotin/metabolism , Pseudomonas aeruginosa/metabolism
13.
Plant Physiol ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315969

ABSTRACT

Abscisic acid signaling has been implicated in plant responses to water deficit-induced osmotic stress. However, the underlying molecular mechanism remains unelucidated. This study identified the RING-type E3 ubiquitin ligase RING ZINC FINGER PROTEIN1 (PtrRZFP1) in poplar (Populus trichocarpa), a woody model plant. PtrRZFP1 encodes a ubiquitin E3 ligase that participates in protein ubiquitination. PtrRZFP1 mainly functions in the nucleus and endoplasmic reticulum and is activated by drought and abscisic acid. PtrRZFP1-overexpressing transgenic poplars (35S:PtrRZFP1) showed greater tolerance to drought, whereas PtrRZFP1-knockdown lines (KD-PtrRZFP1) showed greater sensitivity to drought. Under treatment with polyethylene glycol and abscisic acid, PtrRZFP1 promoted the production of NO and H2O2 in stomatal guard cells, ultimately enhancing stomatal closure and improving drought tolerance. Additionally, PtrRZFP1 physically interacted with the clade A Protein Phosphatase 2C protein PtrPP2C-9, a core regulator of abscisic acid signaling, and mediated its ubiquitination and eventual degradation through the ubiquitination-26S proteasome system, indicating that PtrRZFP1 positively regulates the abscisic acid signaling pathway. Furthermore, the PtrPP2C-9-overexpression line was insensitive to abscisic acid and more sensitive to drought than the wild-type plants, whereas the opposite phenotype was observed in 35S:PtrRZFP1 plants. In general, PtrRZFP1 negatively regulates the stability of PtrPP2C-9 to mediate poplar drought tolerance. The results of this study provide a theoretical framework for the targeted breeding of drought-tolerant traits in perennial woody plants.

14.
Nature ; 569(7754): 131-135, 2019 05.
Article in English | MEDLINE | ID: mdl-30996350

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Leukemia Inhibitory Factor/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Paracrine Communication , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Humans , Leukemia Inhibitory Factor/antagonists & inhibitors , Leukemia Inhibitory Factor/blood , Male , Mass Spectrometry , Mice , Pancreatic Neoplasms/diagnosis , Paracrine Communication/drug effects , Receptors, OSM-LIF/deficiency , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Tumor Microenvironment
15.
Nucleic Acids Res ; 51(22): 12140-12149, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37904586

ABSTRACT

Gut phages have an important impact on human health. Methylation plays key roles in DNA recognition, gene expression regulation and replication for phages. However, the DNA methylation landscape of gut phages is largely unknown. Here, with PacBio sequencing (2120×, 4785 Gb), we detected gut phage methylation landscape based on 22 673 gut phage genomes, and presented diverse methylation motifs and methylation differences in genomic elements. Moreover, the methylation rate of phages was associated with taxonomy and host, and N6-methyladenine methylation rate was higher in temperate phages than in virulent phages, suggesting an important role for methylation in phage-host interaction. In particular, 3543 (15.63%) phage genomes contained restriction-modification system, which could aid in evading clearance by the host. This study revealed the DNA methylation landscape of gut phage and its potential roles, which will advance the understanding of gut phage survival and human health.


Subject(s)
Bacteriophages , DNA Methylation , Gastrointestinal Microbiome , Humans , Bacteriophages/physiology , Bacteria/virology , Archaea/virology , DNA Restriction-Modification Enzymes
16.
J Biol Chem ; 299(1): 102781, 2023 01.
Article in English | MEDLINE | ID: mdl-36496074

ABSTRACT

TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.


Subject(s)
Alternative Splicing , Endoplasmic Reticulum , Membrane Proteins , Cations/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Gene Expression Regulation/genetics
17.
J Cell Physiol ; : e31442, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319990

ABSTRACT

The apoptosis resistance of myofibroblasts is a hallmark in the irreversible progression of pulmonary fibrosis (PF). While the underlying molecular mechanism remains elusive. In this study, we unveiled a previously unrecognized mechanism underlying myofibroblast apoptosis resistance during PF. Our investigation revealed heightened expression of mesenchyme homeobox 1 (MEOX1) in the lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin-induced PF mice. Silencing MEOX1 significantly attenuated PF progression in mice. In vitro, we found a notable increase in MEOX1 expression in transforming growth factor-ß1 (TGF-ß1)-induced myofibroblasts. Silencing MEOX1 enhanced apoptosis of myofibroblasts. Mechanistically, we identified G-protein signaling pathway regulatory factor 4 (RGS4) as a critical downstream target of MEOX1, as predicted by bioinformatics analysis. MEOX1 enhanced apoptosis resistance by upregulating RGS4 expression in myofibroblasts. In conclusion, our study highlights MEOX1 as a promising therapeutic target for protecting against PF by modulating myofibroblast apoptosis resistance.

18.
BMC Genomics ; 25(1): 883, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300339

ABSTRACT

BACKGROUND: Tiarella polyphylla D. Don has been traditionally used to cure asthma and skin eruptions. However, the sequence and the structure of the mitogenome of T. polyphylla remained elusive, limiting the genomic and evolution analysis based on the mitogenome. RESULTS: Using a combination of Illumina and Nanopore sequencing reads, we de novo assembled the complete mitogenome of T. polyphylla. In addition to unveiling the major configuration of the T. polyphylla mitogenome was three circular chromosomes with lengths of 430,435 bp, 126,943 bp, and 55,269 bp, we revealed five (R01-R05) and one (R06) repetitive sequence could mediate the intra- and inter-chromosomal recombination, respectively. Furthermore, we identified 208 short and 25 long tandem segments, seven cp-derived mtDNAs, 106 segments of mtDNAs transferred to the nuclear genome, and 653 predicted RNA editing sites. Based on the sequence of the mitogenomes, we obtained the resolved phylogeny of the seven Saxifragales species. CONCLUSIONS: These results presented the mitogenome features and expanded its potential applications in phylogenetics, species identification, and cytoplasmic male sterility (CMS) in the future.


Subject(s)
Genome, Mitochondrial , Phylogeny , DNA, Mitochondrial/genetics , Chromosomes, Plant/genetics , RNA Editing
19.
BMC Genomics ; 25(1): 331, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565992

ABSTRACT

BACKGROUND: The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS: Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS: Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.


Subject(s)
Genetic Introgression , Genome-Wide Association Study , Humans , Animals , Swine/genetics , Genome , Genomics/methods , Breeding , Polymorphism, Single Nucleotide , Sus scrofa/genetics , Selection, Genetic
20.
Breast Cancer Res ; 26(1): 27, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347651

ABSTRACT

BACKGROUND: A malignancy might be found at surgery in cases of atypical ductal hyperplasia (ADH) diagnosed via US-guided core needle biopsy (CNB). The objective of this study was to investigate the diagnostic performance of contrast-enhanced ultrasound (CEUS) in predicting ADH diagnosed by US-guided CNB that was upgraded to malignancy after surgery. METHODS: In this retrospective study, 110 CNB-diagnosed ADH lesions in 109 consecutive women who underwent US, CEUS, and surgery between June 2018 and June 2023 were included. CEUS was incorporated into US BI-RADS and yielded a CEUS-adjusted BI-RADS. The diagnostic performance of US BI-RADS and CEUS-adjusted BI-RADS for ADH were analyzed and compared. RESULTS: The mean age of the 109 women was 49.7 years ± 11.6 (SD). The upgrade rate of ADH at CNB was 48.2% (53 of 110). The sensitivity, specificity, positive predictive value, and negative predictive value of CEUS for identification of malignant upgrading were 96.2%, 66.7%,72.9%, and 95.0%, respectively, based on BI-RADS category 4B threshold. The two false-negative cases were low-grade ductal carcinoma in situ. Compared with the US, CEUS-adjusted BI-RADS had better specificity for lesions smaller than 2 cm (76.7% vs. 96.7%, P = 0.031). After CEUS, 16 (10 malignant and 6 nonmalignant) of the 45 original US BI-RADS category 4A lesions were up-classified to BI-RADS 4B, and 3 (1 malignant and 2 nonmalignant) of the 41 original US BI-RADS category 4B lesions were down-classified to BI-RADS 4A. CONCLUSIONS: CEUS is helpful in predicting malignant upgrading of ADH, especially for lesions smaller than 2 cm and those classified as BI-RADS 4A and 4B on ultrasound.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Female , Humans , Middle Aged , Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Ultrasonography, Mammary , Retrospective Studies , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Biopsy, Large-Core Needle
SELECTION OF CITATIONS
SEARCH DETAIL