Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Nat Immunol ; 18(7): 780-790, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553951

ABSTRACT

The acquisition of a protective vertebrate immune system hinges on the efficient generation of a diverse but self-tolerant repertoire of T cells by the thymus through mechanisms that remain incompletely resolved. Here we identified the endosomal-sorting-complex-required-for-transport (ESCRT) protein CHMP5, known to be required for the formation of multivesicular bodies, as a key sensor of thresholds for signaling via the T cell antigen receptor (TCR) that was essential for T cell development. CHMP5 enabled positive selection by promoting post-selection thymocyte survival in part through stabilization of the pro-survival protein Bcl-2. Accordingly, loss of CHMP5 in thymocyte precursor cells abolished T cell development, a phenotype that was 'rescued' by genetic deletion of the pro-apoptotic protein Bim or transgenic expression of Bcl-2. Mechanistically, positive selection resulted in the stabilization of CHMP5 by inducing its interaction with the deubiquitinase USP8. Our results thus identify CHMP5 as an essential component of the post-translational machinery required for T cell development.


Subject(s)
Cell Differentiation/immunology , Endosomal Sorting Complexes Required for Transport/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Thymocytes/immunology , Animals , Bcl-2-Like Protein 11/immunology , Endopeptidases/immunology , Immunoblotting , Immunoprecipitation , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-bcl-2/immunology , Real-Time Polymerase Chain Reaction , Signal Transduction/immunology , T-Lymphocytes/cytology , Thymocytes/cytology , Ubiquitin Thiolesterase/immunology
2.
Annu Rev Cell Dev Biol ; 29: 63-79, 2013.
Article in English | MEDLINE | ID: mdl-23725048

ABSTRACT

Mitogen-activated protein kinases (MAPKs) are ancient signal transducers well characterized as mediators of inflammation and neoplastic transformation. Recent work has expanded our understanding of their developmental functions, particularly in the regulation of bone mass via control of osteoblast differentiation. Here, we review the functions of MAPK pathways in osteoblasts, including a consideration of MAPK substrates. In particular, MAPKs function to regulate the key transcriptional mediators of osteoblast differentiation, with ERK and p38 MAPKs phosphorylating RUNX2, the master regulator of osteoblast differentiation. ERK also activates RSK2, which in turn phosphorylates ATF4, a transcriptional regulator of late-stage osteoblast synthetic functions. The MAP3Ks and MAP2Ks upstream of MAPKs have also been investigated, and significant differences have been found in the wiring of MAPK pathways in osteoblasts relative to other tissues. Thus, the investigation of MAPKs in osteoblasts has both revealed critical mechanisms for the maintenance of bone mass and added to our understanding of how the individual components of MAPK pathways function in concert in a complex in vivo system.


Subject(s)
MAP Kinase Signaling System , Osteoblasts/metabolism , Animals , Humans , Mitogen-Activated Protein Kinases/metabolism , Osteogenesis
3.
Proc Natl Acad Sci U S A ; 120(19): e2218019120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37141171

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to systemic and articular bone loss by activating bone resorption and suppressing bone formation. Despite current therapeutic agents, inflammation-induced bone loss in RA continues to be a significant clinical problem due to joint deformity and lack of articular and systemic bone repair. Here, we identify the suppressor of bone formation, Schnurri-3 (SHN3), as a potential target to prevent bone loss in RA. SHN3 expression in osteoblast-lineage cells is induced by proinflammatory cytokines. Germline deletion or conditional deletion of Shn3 in osteoblasts limits articular bone erosion and systemic bone loss in mouse models of RA. Similarly, silencing of SHN3 expression in these RA models using systemic delivery of a bone-targeting recombinant adenoassociated virus protects against inflammation-induced bone loss. In osteoblasts, TNF activates SHN3 via ERK MAPK-mediated phosphorylation and, in turn, phosphorylated SHN3 inhibits WNT/ß-catenin signaling and up-regulates RANKL expression. Accordingly, knock-in of a mutation in Shn3 that fails to bind ERK MAPK promotes bone formation in mice overexpressing human TNF due to augmented WNT/ß-catenin signaling. Remarkably, Shn3-deficient osteoblasts are not only resistant to TNF-induced suppression of osteogenesis, but also down-regulate osteoclast development. Collectively, these findings demonstrate SHN3 inhibition as a promising approach to limit bone loss and promote bone repair in RA.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Mice , Humans , Animals , beta Catenin/metabolism , DNA-Binding Proteins/metabolism , Bone and Bones/metabolism , Osteoblasts/metabolism , Osteogenesis/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Bone Resorption/metabolism , Inflammation/metabolism , Osteoclasts/metabolism
4.
Mol Ther ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38937970

ABSTRACT

Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.

5.
Nature ; 562(7725): 133-139, 2018 10.
Article in English | MEDLINE | ID: mdl-30250253

ABSTRACT

Bone consists of separate inner endosteal and outer periosteal compartments, each with distinct contributions to bone physiology and each maintaining separate pools of cells owing to physical separation by the bone cortex. The skeletal stem cell that gives rise to endosteal osteoblasts has been extensively studied; however, the identity of periosteal stem cells remains unclear1-5. Here we identify a periosteal stem cell (PSC) that is present in the long bones and calvarium of mice, displays clonal multipotency and self-renewal, and sits at the apex of a differentiation hierarchy. Single-cell and bulk transcriptional profiling show that PSCs display transcriptional signatures that are distinct from those of other skeletal stem cells and mature mesenchymal cells. Whereas other skeletal stem cells form bone via an initial cartilage template using the endochondral pathway4, PSCs form bone via a direct intramembranous route, providing a cellular basis for the divergence between intramembranous versus endochondral developmental pathways. However, there is plasticity in this division, as PSCs acquire endochondral bone formation capacity in response to injury. Genetic blockade of the ability of PSCs to give rise to bone-forming osteoblasts results in selective impairments in cortical bone architecture and defects in fracture healing. A cell analogous to mouse PSCs is present in the human periosteum, raising the possibility that PSCs are attractive targets for drug and cellular therapy for skeletal disorders. The identification of PSCs provides evidence that bone contains multiple pools of stem cells, each with distinct physiologic functions.


Subject(s)
Bone Development , Bone and Bones/cytology , Periosteum/cytology , Stem Cells/cytology , Animals , Cathepsin K/metabolism , Cell Differentiation , Female , Femur/cytology , Fracture Healing , Gene Expression Regulation , Humans , Male , Mesenchymal Stem Cells/cytology , Mice , Osteoblasts/cytology , Skull/cytology
6.
Mol Ther ; 31(2): 435-453, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36184851

ABSTRACT

Treating osteoporosis and associated bone fractures remains challenging for drug development in part due to potential off-target side effects and the requirement for long-term treatment. Here, we identify recombinant adeno-associated virus (rAAV)-mediated gene therapy as a complementary approach to existing osteoporosis therapies, offering long-lasting targeting of multiple targets and/or previously undruggable intracellular non-enzymatic targets. Treatment with a bone-targeted rAAV carrying artificial microRNAs (miRNAs) silenced the expression of WNT antagonists, schnurri-3 (SHN3), and sclerostin (SOST), and enhanced WNT/ß-catenin signaling, osteoblast function, and bone formation. A single systemic administration of rAAVs effectively reversed bone loss in both postmenopausal and senile osteoporosis. Moreover, the healing of bone fracture and critical-sized bone defects was also markedly improved by systemic injection or transplantation of AAV-bound allograft bone to the osteotomy sites. Collectively, our data demonstrate the clinical potential of bone-specific gene silencers to treat skeletal disorders of low bone mass and impaired fracture repair.


Subject(s)
Fractures, Bone , Osteoporosis , Humans , Adaptor Proteins, Signal Transducing/genetics , Osteoporosis/genetics , Osteoporosis/therapy , Fractures, Bone/genetics , Fractures, Bone/therapy , Bone and Bones , Genetic Therapy
7.
Nat Immunol ; 12(1): 96-104, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21151104

ABSTRACT

Overactive responses by interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) are tightly linked to the development of autoimmunity, yet the factors that negatively regulate the differentiation of this lineage remain unknown. Here we report that the transcription factor T-bet suppressed development of the T(H)17 cell lineage by inhibiting transcription of Rorc (which encodes the transcription factor RORγt). T-bet interacted with the transcription factor Runx1, and this interaction blocked Runx1-mediated transactivation of Rorc. T-bet Tyr304 was required for formation of the T-bet-Runx1 complex, for blockade of Runx1 activity and for inhibition of the T(H)17 differentiation program. Our data reinforce the idea of master regulators that shape immune responses by simultaneously activating one genetic program while silencing the activity of competing regulators in a common progenitor cell.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Box Domain Proteins/metabolism , Th17 Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/immunology , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Gene Regulatory Networks , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Protein Binding/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Th17 Cells/immunology , Th17 Cells/pathology
8.
Sensors (Basel) ; 23(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765961

ABSTRACT

Chronic exposure to low concentrations of volatile organic compounds (VOCs), such as chlorobenzene, is not being monitored in industrializing countries, although VOC exposure is associated with carcinogenic, organ-toxic, and endocrine-disrupting effects. Current VOC-sensing technologies are inaccessible due to high cost, size, and maintenance or are ineffective due to poor sensitivity or reliability. In particular, marginalized individuals face barriers to traditional prescription VOC treatments due to cost, lack of transportation, and limited access to physicians; thus, alternative treatments are needed. Here, we created a novel cumulative wearable color-changing VOC sensor with a paper-based polydiacetylene sensor array for chlorobenzene. With a single smartphone picture, the sensor displays 14 days of logged chlorobenzene exposure data, interpreted by machine-learning (ML) techniques, including principal component analysis. Further, we explored the efficacy of affordable and accessible treatment options to mitigate a VOC's toxic effects. Vitamin D and sulforaphane are naturally found in cruciferous vegetables, like broccoli, and can be used to treat chlorobenzene-mediated bone degradation. Our platform combines these components into a smartphone app that photographs the sensor's colorimetric data, analyzes the data via ML techniques, and offers accessible treatments based on exposure data.


Subject(s)
Volatile Organic Compounds , Wearable Electronic Devices , Humans , Reproducibility of Results , Chlorobenzenes
9.
Int J Med Sci ; 18(15): 3353-3360, 2021.
Article in English | MEDLINE | ID: mdl-34522160

ABSTRACT

Background: Despite several studies on the effect of adeno-associated virus (AAV)-based therapeutics on osteoarthritis (OA), information on the transduction efficiency and applicable profiles of different AAV serotypes to chondrocytes in hard cartilage tissue is still limited. Moreover, the recent discovery of additional AAV serotypes makes it necessary to screen for more suitable AAV serotypes for specific tissues. Here, we compared the transduction efficiencies of 14 conventional AAV serotypes in human chondrocytes, mouse OA models, and human cartilage explants obtained from OA patients. Methods: To compare the transduction efficiency of individual AAV serotypes, green fluorescent protein (GFP) expression was detected by fluorescence microscopy or western blotting. Likewise, to compare the transduction efficiencies of individual AAV serotypes in cartilage tissues, GFP expression was determined using fluorescence microscopy or immunohistochemistry, and GFP-positive cells were counted. Results: Only AAV2, 5, 6, and 6.2 exhibited substantial transduction efficiencies in both normal and OA chondrocytes. All AAV serotypes except AAV6 and rh43 could effectively transduce human bone marrow mesenchymal stem cells. In human and mouse OA cartilage tissues, AAV2, AAV5, AAV6.2, AAV8, and AAV rh39 showed excellent tissue specificity based on transduction efficiency. These results indicate the differences in transduction efficiencies of AAV serotypes between cellular and tissue models. Conclusions: Our findings indicate that AAV2 and AAV6.2 may be the best choices for AAV-mediated gene delivery into intra-articular cartilage tissue. These AAV vectors hold the potential to be of use in clinical applications to prevent OA progression if appropriate therapeutic genes are inserted into the vector.


Subject(s)
Cartilage, Articular/virology , Chondrocytes/virology , Dependovirus/genetics , Osteoarthritis/genetics , Transduction, Genetic/methods , Animals , Disease Models, Animal , Gene Expression/genetics , Gene Transfer Techniques , Genetic Therapy , Green Fluorescent Proteins/genetics , Humans , Mice , Osteoarthritis/virology , Serogroup
10.
Int J Mol Sci ; 22(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638628

ABSTRACT

Disturbance in a differentiation program of skeletal stem cells leads to indecorous skeletogenesis. Growing evidence suggests that a fine-tuning of ubiquitin-mediated protein degradation is crucial for skeletal stem cells to maintain their stemness and osteogenic potential. Here, we demonstrate that the deubiquitinating enzyme (DUB) ubiquitin-specific protease 8 (USP8) stabilizes the Wnt receptor frizzled 5 (FZD5) by preventing its lysosomal degradation. This pathway is essential for Wnt/ß-catenin signaling and the differentiation of osteoprogenitors to mature osteoblasts. Accordingly, deletion of USP8 in osteoprogenitors (Usp8Osx) resulted in a near-complete blockade in skeletal mineralization, similar to that seen in mice with defective Wnt/ß-catenin signaling. Likewise, transplanting USP8-deficient osteoprogenitors under the renal capsule in wild-type secondary hosts did not to induce bone formation. Collectively, this study unveils an essential role for the DUB USP8 in Wnt/ß-catenin signaling in osteoprogenitors and osteogenesis during skeletal development.


Subject(s)
Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Osteogenesis/physiology , Ubiquitin Thiolesterase/metabolism , Wnt Signaling Pathway/physiology , Animals , Cell Differentiation/physiology , Female , Male , Mice , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteoblasts/physiology , Stem Cells/metabolism , Stem Cells/physiology , beta Catenin/metabolism
11.
Biochem Biophys Res Commun ; 531(4): 497-502, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32807497

ABSTRACT

Current anabolic drugs to treat osteoporosis and other disorders of low bone mass all have important limitations in terms of toxicity, contraindications, or poor efficacy in certain contexts. Addressing these limitations will require a better understanding of the molecular pathways, such as the mitogen activated protein kinase (MAPK) pathways, that govern osteoblast differentiation and, thereby, skeletal mineralization. Whereas MAP3Ks functioning in the extracellular signal-regulated kinases (ERK) and p38 pathways have been identified in osteoblasts, MAP3Ks mediating proximal activation of the c-Jun N-terminal kinase (JNK) pathway have yet to be identified. Here, we demonstrate that thousand-and-one kinase 3 (TAOK3, MAP3K18) functions as an upstream activator of the JNK pathway in osteoblasts both in vitro and in vivo. Taok3-deficient osteoblasts displayed defective JNK pathway activation and a marked decrease in osteoblast differentiation markers and defective mineralization, which was also confirmed using TAOK3 deficient osteoblasts derived from human MSCs. Additionally, reduced expression of Taok3 in a murine model resulted in osteopenia that phenocopies aspects of the Jnk1-associated skeletal phenotype such as occipital hypomineralization. Thus, in vitro and in vivo evidence supports TAOK3 as a proximal activator of the JNK pathway in osteoblasts that plays a critical role in skeletal mineralization.


Subject(s)
Calcification, Physiologic/physiology , Cell Differentiation , Osteoblasts/cytology , Protein Serine-Threonine Kinases/genetics , Animals , Cells, Cultured , Femur/cytology , Femur/diagnostic imaging , Gene Expression , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL , Mice, Mutant Strains , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , Osteoblasts/physiology , Phenotype , Protein Serine-Threonine Kinases/metabolism , X-Ray Microtomography
12.
Proc Natl Acad Sci U S A ; 113(9): E1226-35, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26884171

ABSTRACT

Proper tuning of ß-catenin activity in osteoblasts is required for bone homeostasis, because both increased and decreased ß-catenin activity have pathologic consequences. In the classical pathway for ß-catenin activation, stimulation with WNT ligands suppresses constitutive phosphorylation of ß-catenin by glycogen synthase kinase 3ß, preventing ß-catenin ubiquitination and proteasomal degradation. Here, we have found that mitogen-activated protein kinase kinase kinase 2 (MAP3K2 or MEKK2) mediates an alternative pathway for ß-catenin activation in osteoblasts that is distinct from the canonical WNT pathway. FGF2 activates MEKK2 to phosphorylate ß-catenin at serine 675, promoting recruitment of the deubiquitinating enzyme, ubiquitin-specific peptidase 15 (USP15). USP15 in turn prevents the basal turnover of ß-catenin by inhibiting its ubiquitin-dependent proteasomal degradation, thereby enhancing WNT signaling. Analysis of MEKK2-deficient mice and genetic interaction studies between Mekk2- and ß-catenin-null alleles confirm that this pathway is an important physiologic regulator of bone mass in vivo. Thus, an FGF2/MEKK2 pathway mediates an alternative nonclassical pathway for ß-catenin activation, and this pathway is a key regulator of bone formation by osteoblasts.


Subject(s)
Bone Development , MAP Kinase Kinase Kinase 2/metabolism , beta Catenin/metabolism , Animals , Mice , Organ Size , Osteoblasts/cytology , Phosphorylation
13.
Int J Mol Sci ; 20(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013682

ABSTRACT

Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that function as key signal transducers of a wide spectrum of extracellular stimuli, including growth factors and pro-inflammatory cytokines. Dysregulation of the extracellular signal-regulated kinase (ERK) MAPK pathway is associated with human skeletal abnormalities including Noonan syndrome, neurofibromatosis type 1, and cardiofaciocutaneous syndrome. Here, we demonstrate that ERK activation in osteoprogenitors is required for bone formation during skeletal development and homeostasis. Deletion of Mek1 and Mek2, kinases upstream of ERK MAPK, in osteoprogenitors (Mek1OsxMek2-/-), resulted in severe osteopenia and cleidocranial dysplasia (CCD), similar to that seen in humans and mice with impaired RUNX2 function. Additionally, tamoxifen-induced deletion of Mek1 and Mek2 in osteoprogenitors in adult mice (Mek1Osx-ERTMek2-/-) significantly reduced bone mass. Mechanistically, this corresponded to decreased activation of osteoblast master regulators, including RUNX2, ATF4, and ß-catenin. Finally, we identified potential regulators of osteoblast differentiation in the ERK MAPK pathway using unbiased phospho-mass spectrometry. These observations demonstrate essential roles of ERK activation in osteogenesis and bone formation.


Subject(s)
Bone Development , Extracellular Signal-Regulated MAP Kinases/metabolism , Homeostasis , MAP Kinase Signaling System , Animals , Biomarkers , Bone Development/genetics , Bone and Bones/metabolism , Bone and Bones/pathology , Cell Differentiation , Cleidocranial Dysplasia/genetics , Cleidocranial Dysplasia/metabolism , Cleidocranial Dysplasia/pathology , Disease Models, Animal , Disease Susceptibility , Immunohistochemistry , Mice , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/genetics
14.
Calcif Tissue Int ; 102(5): 533-546, 2018 05.
Article in English | MEDLINE | ID: mdl-29204672

ABSTRACT

Patients with rheumatoid arthritis (RA) have historically developed progressive damage of articular bone and cartilage, which correlates with disability over time. In addition, these patients are prone to periarticular and systemic bone loss, carrying additional morbidity. In contrast to what is seen in many other rheumatic diseases, the impact of inflammation on bone in RA is uniquely destructive. Loss of articular bone (erosions) and periarticular bone (demineralization) is a result of excessive bone resorption and markedly limited bone formation. There has been tremendous progress in preventing net bone loss in RA with the advent of disease-modifying agents, including biologic agents and small molecules, that both limit inflammation and may have a direct impact on the prevention of cytokine- and antibody-driven osteoclastogenesis. However, repair of existing bone erosions, although feasible, is observed infrequently. Lack of repair is a consequence of suppression of osteoblast function and bone formation by some of the same mechanisms that promote osteoclastogenesis and bone resorption. As new agents are introduced to control inflammation in RA, and novel mechanisms to target synovitis are identified, it may be possible in the future to fully repair damaged bone.


Subject(s)
Arthritis, Rheumatoid/complications , Bone Resorption/complications , Bone and Bones/drug effects , Osteoclasts/immunology , Osteogenesis/immunology , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Bone Diseases, Metabolic/drug therapy , Bone Resorption/immunology , Humans , Osteoclasts/drug effects , Osteogenesis/drug effects
15.
Bioorg Med Chem ; 26(3): 758-764, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29306547

ABSTRACT

Cell therapies are promising up-and-coming therapeutic strategies for many diseases. For maximal therapeutic benefits, injected cells have to navigate their way to a designated area, including organ and tissue; unfortunately, the majority of therapeutic cells are currently administered without a guide or homing device. To improve this serious shortcoming, a functionalization method was developed to equip cells with a homing signal. Its application was demonstrated by applying an Azadibenzocyclooctyne-bisphosphonate (ADIBO-BP) and azide paired bioorthogonal chemistry on cells for bone specific homing. Jurkat T cells and bone marrow derived stromal cells (BMSCs) were cultured with tetraacetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz) to place unnatural azido groups onto the cell's surface; these azido groups were then reacted with ADIBO-BP. The tethered bisphosphonates were able to bring Jurkat cells to hydroxyapatite, the major component of bone, and mineralized SAOS-2 cells. The incorporated BP groups also enhanced the specific affinity of BMSCs to mouse femur bone fragments in vitro. The introduced navigation strategy is expected to have a broad application in cell therapy, because through the biocompatible ADIBO and azide reactive pair, various homing signals could be efficiently anchored onto therapeutic cells.


Subject(s)
Cell Differentiation/drug effects , Diphosphonates/pharmacology , Animals , Azides/chemistry , Bone Marrow Cells/cytology , Bone and Bones/cytology , Bone and Bones/metabolism , Cell Survival/drug effects , Cell- and Tissue-Based Therapy , Cells, Cultured , Diphosphonates/chemistry , Durapatite/metabolism , Hexosamines/toxicity , Humans , Jurkat Cells , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence
16.
J Biol Chem ; 290(1): 284-95, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25406311

ABSTRACT

An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678-27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38α(K14) mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and ß4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.


Subject(s)
Ameloblasts/metabolism , Dental Enamel/metabolism , Gene Expression Regulation, Developmental , Incisor/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , Odontogenesis/genetics , Ameloblasts/cytology , Amelogenin/genetics , Amelogenin/metabolism , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , Cell Differentiation , Cell Proliferation , Dental Enamel/cytology , Dental Enamel/growth & development , Incisor/cytology , Incisor/growth & development , Integrin beta4/genetics , Integrin beta4/metabolism , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase 14/genetics , Signal Transduction , Tissue Culture Techniques , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
17.
J Biol Chem ; 289(51): 35205-14, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25371197

ABSTRACT

ECSIT (evolutionarily conserved signaling intermediate in Toll pathways) is known as a multifunctional regulator in different signals, including Toll-like receptors (TLRs), TGF-ß, and BMP. Here, we report a new regulatory role of ECSIT in TLR4-mediated signal. By LPS stimulation, ECSIT formed a high molecular endogenous complex including TAK1 and TRAF6, in which ECSIT interacted with each protein and regulated TAK1 activity, leading to the activation of NF-κB. ECSIT-knockdown THP-1 (ECSIT(KD) THP-1) cells exhibited severe impairments in NF-κB activity, cytokine production, and NF-κB-dependent gene expression, whereas those were dramatically restored by reintroduction of wild type (WT) ECSIT gene. Interestingly, ECSIT mutants, which lack a specific interacting domain for either TAK1 or TRAF6, could not restore these activities. Moreover, no significant changes in both NF-κB activity and cytokine production induced by TLR4 could be seen in TAK1(KD) or TRAF6(KD) THP-1 cells transduced by WT ECSIT, strongly suggesting the essential requirement of TAK1-ECSIT-TRAF6 complex in TLR4 signaling. Taken together, our data demonstrate that the ECSIT complex, including TAK1 and TRAF6, plays a pivotal role in TLR4-mediated signals to activate NF-κB.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Signal Transducing/genetics , Blotting, Western , Cell Line, Tumor , Gene Expression Profiling , HEK293 Cells , Humans , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/genetics , Multiprotein Complexes/metabolism , Mutation , NF-kappa B/genetics , Oligonucleotide Array Sequence Analysis , Protein Binding/drug effects , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/genetics , Toll-Like Receptor 4/genetics
18.
Proc Natl Acad Sci U S A ; 109(21): 8173-8, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22573816

ABSTRACT

Mice lacking the large zinc finger protein Schnurri-3 (Shn3) display increased bone mass, in part, attributable to augmented osteoblastic bone formation. Here, we show that in addition to regulating bone formation, Shn3 indirectly controls bone resorption by osteoclasts in vivo. Although Shn3 plays no cell-intrinsic role in osteoclasts, Shn3-deficient animals show decreased serum markers of bone turnover. Mesenchymal cells lacking Shn3 are defective in promoting osteoclastogenesis in response to selective stimuli, likely attributable to reduced expression of the key osteoclastogenic factor receptor activator of nuclear factor-κB ligand. The bone phenotype of Shn3-deficient mice becomes more pronounced with age, and mice lacking Shn3 are completely resistant to disuse osteopenia, a process that requires functional osteoclasts. Finally, selective deletion of Shn3 in the mesenchymal lineage recapitulates the high bone mass phenotype of global Shn3 KO mice, including reduced osteoclastic bone catabolism in vivo, indicating that Shn3 expression in mesenchymal cells directly controls osteoblastic bone formation and indirectly regulates osteoclastic bone resorption.


Subject(s)
Bone Resorption/physiopathology , DNA-Binding Proteins/genetics , Hyperparathyroidism, Secondary/physiopathology , Osteoblasts/physiology , Osteoclasts/physiology , Aging/physiology , Animals , Bone Resorption/genetics , Cells, Cultured , Coculture Techniques , Cyclic AMP Response Element-Binding Protein/metabolism , DNA-Binding Proteins/metabolism , Hyperparathyroidism, Secondary/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/cytology , Osteoclasts/cytology , Phenotype , RANK Ligand/metabolism , Regulatory Elements, Transcriptional/physiology , Skull/cytology
19.
Hum Gene Ther ; 35(9-10): 317-328, 2024 May.
Article in English | MEDLINE | ID: mdl-38534217

ABSTRACT

Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.


Subject(s)
Bone Diseases , Dependovirus , Genetic Therapy , Genetic Vectors , Humans , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Bone Diseases/therapy , Bone Diseases/genetics , Animals , Gene Transfer Techniques , Gene Editing/methods
20.
Hum Gene Ther ; 35(9-10): 329-341, 2024 May.
Article in English | MEDLINE | ID: mdl-38661537

ABSTRACT

The development of bone-targeting drug delivery systems holds immense promise for improving the treatment of skeletal diseases. By precisely delivering therapeutic agents to the affected areas of bone, these strategies can enhance drug efficacy, minimize off-target effects, and promote patient adherence, ultimately leading to improved treatment outcomes and an enhanced quality of life for patients. This review aims to provide an overview of the current state of affinity-based bone-targeting agents and recent breakthroughs in innovative bone-targeting adeno-associated virus (AAV) strategies to treat skeletal diseases in mice. In particular, this review will delve into advanced AAV engineering, including AAV serotype selection for bone targeting and capsid modifications for bone-specific tropism. Additionally, we will highlight recent advancements in AAV-mediated gene therapy for skeletal diseases and discuss challenges and future directions of this promising therapeutic approach.


Subject(s)
Bone Diseases , Dependovirus , Drug Delivery Systems , Genetic Therapy , Genetic Vectors , Dependovirus/genetics , Humans , Animals , Genetic Therapy/methods , Drug Delivery Systems/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Bone Diseases/therapy , Bone and Bones/metabolism , Gene Transfer Techniques , Mice
SELECTION OF CITATIONS
SEARCH DETAIL