Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Heredity (Edinb) ; 118(2): 193-201, 2017 02.
Article in English | MEDLINE | ID: mdl-27703154

ABSTRACT

Numerous landscape genomic studies have identified single-nucleotide polymorphisms (SNPs) and genes potentially involved in local adaptation. Rarely, it has been explicitly evaluated whether these environmental associations also hold true beyond the populations studied. We tested whether putatively adaptive SNPs in Arabidopsis halleri (Brassicaceae), characterized in a previous study investigating local adaptation to a highly heterogeneous environment, show the same environmental associations in an independent, geographically enlarged set of 18 populations. We analysed new SNP data of 444 plants with the same methodology (partial Mantel tests, PMTs) as in the original study and additionally with a latent factor mixed model (LFMM) approach. Of the 74 candidate SNPs, 41% (PMTs) and 51% (LFMM) were associated with environmental factors in the independent data set. However, only 5% (PMTs) and 15% (LFMM) of the associations showed the same environment-allele relationships as in the original study. In total, we found 11 genes (31%) containing the same association in the original and independent data set. These can be considered prime candidate genes for environmental adaptation at a broader geographical scale. Our results suggest that selection pressures in highly heterogeneous alpine environments vary locally and signatures of selection are likely to be population-specific. Thus, genotype-by-environment interactions underlying adaptation are more heterogeneous and complex than is often assumed, which might represent a problem when testing for adaptation at specific loci.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/genetics , Climate , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Alleles , Genes, Plant , Genetics, Population , Genotype , Geography , Linear Models , Models, Genetic , Selection, Genetic
2.
J Evol Biol ; 26(10): 2221-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23980527

ABSTRACT

The evolution of self-compatibility (SC) by the loss of self-incompatibility (SI) is regarded as one of the most frequent transitions in flowering plants. SI systems are generally characterized by specific interactions between the male and female specificity genes encoded at the S-locus. Recent empirical studies have revealed that the evolution of SC is often driven by male SC-conferring mutations at the S-locus rather than by female mutations. In this study, using a forward simulation model, we compared the fixation probabilities of male vs. female SC-conferring mutations at the S-locus. We explicitly considered the effects of pollen availability in the population and bias in the occurrence of SC-conferring mutations on the male and female specificity genes. We found that male SC-conferring mutations were indeed more likely to be fixed than were female SC-conferring mutations in a wide range of parameters. This pattern was particularly strong when pollen availability was relatively high. Under such a condition, even if the occurrence of mutations was biased strongly towards the female specificity gene, male SC-conferring mutations were much more often fixed. Our study demonstrates that fixation probabilities of those two types of mutation vary strongly depending on ecological and genetic conditions, although both types result in the same evolutionary consequence-the loss of SI.


Subject(s)
Models, Genetic , Plants/genetics , Pollen/physiology , Pollination/genetics , Self-Fertilization/genetics , Biological Evolution , Computer Simulation , Inbreeding , Mutation
3.
Development ; 127(20): 4511-8, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11003848

ABSTRACT

Sexual reproduction in plants, unlike that of animals, requires the action of multicellular haploid gametophytes. The male gametophyte (pollen tube) is guided to a female gametophyte through diploid sporophytic cells in the pistil. While interactions between the pollen tube and diploid cells have been described, little is known about the intercellular recognition systems between the pollen tube and the female gametophyte. In particular, the mechanisms that enable only one pollen tube to interact with each female gametophyte, thereby preventing polysperm, are not understood. We isolated female gametophyte mutants named magatama (maa) from Arabidopsis thaliana by screening for siliques containing half the normal number of mature seeds. In maa1 and maa3 mutants, in which the development of the female gametophyte was delayed, pollen tube guidance was affected. Pollen tubes were directed to mutant female gametophytes, but they lost their way just before entering the micropyle and elongated in random directions. Moreover, the mutant female gametophytes attracted two pollen tubes at a high frequency. To explain the interaction between gametophytes, we propose a monogamy model in which a female gametophyte emits two attractants and prevents polyspermy. This prevention process by the female gametophyte could increase a plant's inclusive fitness by facilitating the fertilization of sibling female gametophytes. In addition, repulsion between pollen tubes might help prevent polyspermy. The reproductive isolations observed in interspecific crosses in Brassicaceae are also consistent with the monogamy model.


Subject(s)
Plant Shoots/growth & development , Pollen/growth & development , Arabidopsis/genetics , Brassicaceae/genetics , Cell Communication , Crosses, Genetic , Genes, Plant , Haploidy , Models, Biological , Mutation , Phenotype , Reproduction/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL