Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
Mol Cell ; 67(3): 512-527.e4, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28757207

ABSTRACT

Aberrant signaling by the mammalian target of rapamycin (mTOR) contributes to the devastating features of cancer cells. Thus, mTOR is a critical therapeutic target and catalytic inhibitors are being investigated as anti-cancer drugs. Although mTOR inhibitors initially block cell proliferation, cell viability and migration in some cancer cells are quickly restored. Despite sustained inhibition of mTORC1/2 signaling, Akt, a kinase regulating cell survival and migration, regains phosphorylation at its regulatory sites. Mechanistically, mTORC1/2 inhibition promotes reorganization of integrin/focal adhesion kinase-mediated adhesomes, induction of IGFR/IR-dependent PI3K activation, and Akt phosphorylation via an integrin/FAK/IGFR-dependent process. This resistance mechanism contributes to xenograft tumor cell growth, which is prevented with mTOR plus IGFR inhibitors, supporting this combination as a therapeutic approach for cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cell Movement/drug effects , Drug Resistance, Neoplasm , Focal Adhesion Kinase 1/metabolism , Melanoma/drug therapy , Multiprotein Complexes/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Receptors, Somatomedin/antagonists & inhibitors , Skin Neoplasms/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Focal Adhesion Kinase 1/genetics , Humans , Integrin alpha2/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Melanoma/enzymology , Melanoma/pathology , Mice, Nude , Multiprotein Complexes/metabolism , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, IGF Type 1 , Receptors, Somatomedin/genetics , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
3.
Mol Cell ; 59(3): 382-98, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26190261

ABSTRACT

Insufficient nutrients disrupt physiological homeostasis, resulting in diseases and even death. Considering the physiological and pathological consequences of this metabolic stress, the adaptive responses that cells utilize under this condition are of great interest. We show that under low-glucose conditions, cells initiate adaptation followed by apoptosis responses using PERK/Akt and MEK1/ERK2 signaling, respectively. For adaptation, cells engage the ER stress-induced unfolded protein response, which results in PERK/Akt activation and cell survival. Sustained and extreme energetic stress promotes a switch to isoform-specific MEK1/ERK2 signaling, induction of GCN2/eIF2α phosphorylation, and ATF4 expression, which overrides PERK/Akt-mediated adaptation and induces apoptosis through ATF4-dependent expression of pro-apoptotic factors including Bid and Trb3. ERK2 activation during metabolic stress contributes to changes in TCA cycle and amino acid metabolism, and cell death, which is suppressed by glutamate and α-ketoglutarate supplementation. Taken together, our results reveal promising targets to protect cells or tissues from metabolic stress.


Subject(s)
Glucose/pharmacology , Glutamic Acid/pharmacology , Ketoglutaric Acids/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Signal Transduction/drug effects , Apoptosis , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Mitogen-Activated Protein Kinase 1/genetics , Stress, Physiological/drug effects
4.
Proc Natl Acad Sci U S A ; 116(8): 2967-2976, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30728292

ABSTRACT

ERK is a key coordinator of the epithelial-to-mesenchymal transition (EMT) in that a variety of EMT-inducing factors activate signaling pathways that converge on ERK to regulate EMT transcription programs. However, the mechanisms by which ERK controls the EMT program are not well understood. Through an analysis of the global changes of gene expression mediated by ERK2, we identified the transcription factor FoxO1 as a potential mediator of ERK2-induced EMT, and thus we investigated the mechanism by which ERK2 regulates FoxO1. Additionally, our analysis revealed that ERK2 induced the expression of Dock10, a Rac1/Cdc42 GEF, during EMT. We demonstrate that the activation of the Rac1/JNK signaling axis downstream of Dock10 leads to an increase in FoxO1 expression and EMT. Taken together, our study uncovers mechanisms by which epithelial cells acquire less proliferative but more migratory mesenchymal properties and reveals potential therapeutic targets for cancers evolving into a metastatic disease state.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Forkhead Box Protein O1/genetics , Guanine Nucleotide Exchange Factors/genetics , Mitogen-Activated Protein Kinase 1/genetics , Cell Line, Tumor , Gene Expression Regulation/genetics , Humans , MAP Kinase Signaling System/genetics , Transcriptional Activation/genetics , rac1 GTP-Binding Protein/genetics
5.
Mol Cell ; 38(1): 114-27, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20385094

ABSTRACT

Hyperactivation of Ras-ERK1/2 signaling is critical to the development of many human malignancies, but little is known regarding the specific contribution of ERK1 or ERK2 to oncogenic processes. We demonstrate that ERK2 but not ERK1 signaling is necessary for Ras-induced epithelial-to-mesenchymal transformation (EMT). Further, ERK2 but not ERK1 overexpression is sufficient to induce EMT. Many ERK1/2-interacting proteins contain amino acid motifs, e.g., DEF or D-motifs, which regulate docking with ERK1/2. Remarkably, ERK2 signaling to DEF motif-containing targets is required to induce EMT and correlates with increased migration, invasion, and survival. Importantly, the late-response gene product Fra1 is necessary for Ras- and ERK2-induced EMT through upregulation of ZEB1/2 proteins. Thus, an apparent critical role for ERK2 DEF motif signaling during tumorigenesis is the regulation of Fra1 and the subsequent induction of ZEB1/2, suggesting a potential therapeutic target for Ras-regulated tumorigenesis.


Subject(s)
Amino Acid Motifs , Cell Differentiation/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Signal Transduction/physiology , Biomarkers/metabolism , Cell Line, Tumor , Cell Movement/physiology , Epithelial Cells/cytology , Epithelial Cells/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Mutation , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RNA Interference , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Finger E-box Binding Homeobox 2 , Zinc Finger E-box-Binding Homeobox 1 , ras Proteins/genetics , ras Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 108(47): E1204-13, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-22065737

ABSTRACT

The p70 ribosomal protein S6 kinase 1 (S6K1) plays a key role in cell growth and proliferation by regulating insulin sensitivity, metabolism, protein synthesis, and cell cycle. Thus, deregulation of S6K contributes to the progression of type 2 diabetes, obesity, aging, and cancer. Considering the biological and clinical importance of S6K1, a complete understanding of its regulation is critical. One of the key motifs in the activation of S6K1 is a turn motif, but its regulation is not well understood. Here we provide evidence for two mechanisms of modulating turn motif phosphorylation and S6K1 activity. First, mammalian target of rapamycin regulates turn motif phosphorylation by inhibiting its dephosphorylation. Second, we unexpectedly found that glycogen synthase kinase (GSK)-3 promotes turn motif phosphorylation. Our studies show that mammalian target of rapamycin and GSK-3 cooperate to control the activity of S6K1, an important regulator of cell proliferation and growth. Our unexpected results provide a clear rationale for the development and use of drugs targeting GSK-3 to treat diseases such as diabetes, cancer, and age-related diseases that are linked to improper regulation of S6K1.


Subject(s)
Cell Proliferation , Glycogen Synthase Kinase 3/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Chromatography, Liquid , Gene Knockdown Techniques , Humans , Immunoblotting , Immunoprecipitation , Phosphorylation , Tandem Mass Spectrometry , Transfection
7.
Cell Rep ; 42(8): 112868, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37494188

ABSTRACT

Cells maintain and dynamically change their proteomes according to the environment and their needs. Mechanistic target of rapamycin (mTOR) is a key regulator of proteostasis, homeostasis of the proteome. Thus, dysregulation of mTOR leads to changes in proteostasis and the consequent progression of diseases, including cancer. Based on the physiological and clinical importance of mTOR signaling, we investigated mTOR feedback signaling, proteostasis, and cell fate. Here, we reveal that mTOR targeting inhibits eIF4E-mediated cap-dependent translation, but feedback signaling activates a translation initiation factor, eukaryotic translation initiation factor 3D (eIF3D), to sustain alternative non-canonical translation mechanisms. Importantly, eIF3D-mediated protein synthesis enables cell phenotype switching from proliferative to more migratory. eIF3D cooperates with mRNA-binding proteins such as heterogeneous nuclear ribonucleoprotein F (hnRNPF), heterogeneous nuclear ribonucleoprotein K (hnRNPK), and Sjogren syndrome antigen B (SSB) to support selective mRNA translation following mTOR inhibition, which upregulates and activates proteins involved in insulin receptor (INSR)/insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate (IRS) and interleukin 6 signal transducer (IL-6ST)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. Our study highlights the mechanisms by which cells establish the dynamic change of proteostasis and the resulting phenotype switch.


Subject(s)
Proteostasis , Receptor, Insulin , RNA, Messenger/metabolism , Receptor, Insulin/metabolism , TOR Serine-Threonine Kinases/metabolism , Sirolimus , Protein Biosynthesis
8.
Am J Physiol Cell Physiol ; 303(7): C743-56, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22855295

ABSTRACT

Vascular morphogenesis is a key process for development, reproduction, and pathogenesis. Thus understanding the mechanisms of this process is of pathophysiological importance. Despite the fact that collagen I is the most abundant and potent promorphogenic molecule known, the molecular mechanisms by which this protein regulates endothelial cell tube morphogenesis are still unclear. Here we provide strong evidence that collagen I induces tube morphogenesis by inhibiting glycogen synthase kinase 3ß (GSK3ß). Further mechanistic studies revealed that GSK3ß activity is regulated by protein kinase D (PKD). PKD inhibited GSK3ß activity, which was required for collagen I-induced endothelial tube morphogenesis. We also found that GSK3ß regulated trafficking of integrin α(2)ß(1) in a Rab11-dependent manner. Taken together, our studies highlight the important role of PKD in the regulation of collagen I-induced vascular morphogenesis and show that it is mediated by the modulation of GSK3ß activity and integrin α(2)ß(1) trafficking.


Subject(s)
Endothelial Cells/enzymology , Glycogen Synthase Kinase 3/physiology , Integrin alpha2beta1/physiology , Morphogenesis/physiology , Protein Kinase C/physiology , Glycogen Synthase Kinase 3 beta , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Protein Transport/physiology , Signal Transduction
9.
Sci Signal ; 15(715): eabm6211, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34982577

ABSTRACT

DNA damage and subsequent cellular response are the basis for many cancer treatments. In this issue of Science Signaling, Liu et al. elucidate a mechanism by which cancer cells survive DNA damage induced by radiation and chemotherapy.


Subject(s)
DNA Damage , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31564638

ABSTRACT

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Subject(s)
Carcinoma/pathology , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Histones/metabolism , Neoplasm Metastasis/genetics , Animals , Carcinogenesis/genetics , Carcinoma/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Disease Progression , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Female , Histones/genetics , Humans , Male , Mice , Promoter Regions, Genetic/genetics , RNA-Seq , Transcription Factors/genetics , Xenograft Model Antitumor Assays
11.
Cancer Res ; 66(12): 6288-95, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16778205

ABSTRACT

Active Ras proteins contribute to breast carcinogenesis and progression. Here, we provide evidence that active H-Ras regulates the expression and activity of the E2F family of transcription factors in SUM-159 breast carcinoma cells. In addition, we show by using a DNA-binding mutant of E2F, as well as expression of specific E2Fs that are transcriptionally active, that the active E2Fs1-3 can mediate the H-Ras-dependent invasion of SUM-159 cells. The inhibitory E2Fs4-5, in contrast, do not influence invasion. One mechanism by which the active E2Fs promote H-Ras-dependent invasion seems to be their ability to increase expression of the beta4 integrin subunit, a component of the alpha6beta4 integrin that is known to enhance carcinoma invasion. Specifically, expression of E2Fs1-3 increased beta4 mRNA, protein, and cell surface expression. The active E2Fs were unable to stimulate invasion in cells that expressed a beta4 short hairpin RNA. This effect of the active E2Fs on beta4 expression does not seem to result from E2F-mediated beta4 transcription because the beta4 promoter lacks known E2F binding motifs. In summary, the data reported here indicate a novel mechanism by which H-Ras can promote the invasion of breast carcinoma cells. This mechanism links active H-Ras, transcriptionally active E2F, and the alpha6beta4 integrin in a common pathway that culminates in enhanced alpha6beta4-dependent invasion.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , E2F Transcription Factors/metabolism , Integrin alpha6beta4/biosynthesis , ras Proteins/metabolism , Animals , Breast Neoplasms/genetics , Cell Adhesion/physiology , Cell Line, Tumor , Collagen , Drug Combinations , Humans , Integrin alpha6beta4/genetics , Laminin/metabolism , Mice , NIH 3T3 Cells , Neoplasm Invasiveness , Proteoglycans , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transfection , ras Proteins/genetics
12.
Cancer Res ; 66(5): 2732-9, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16510594

ABSTRACT

ErbB2 (HER2, Neu) and Ras play key roles in tumor invasion and metastasis. We identified a novel mechanism by which integrin alpha(6)beta(4) regulates ErbB2 expression, Ras activation, and the invasion of breast carcinoma cells. Here we show that integrin alpha(6)beta(4) regulates Ras activity especially in serum-depleted condition. Down-regulation of beta(4) integrin by beta(4) short hairpin RNA (shRNA) decreased Ras activity and carcinoma invasion whereas reexpression of this integrin restored Ras activity. ErbB2, a binding partner of epidermal growth factor receptor (EGFR), and EGFR modulated Ras activity, and integrin alpha(6)beta(4) regulated phospho-EGFR level without affecting EGFR expression. We also found that integrin alpha(6)beta(4) is involved in ErbB2 expression. Depletion of beta(4) by shRNA reduced ErbB2 protein level without affecting ErbB2 mRNA level and reexpression of beta(4) increased ErbB2 protein level. Reduction of eukaryotic initiation factor 4E, a rate-limiting factor for cap-dependent translation, decreased ErbB2 protein level, and beta(4) shRNA cells exhibited a shift in ErbB2 mRNA to light polysomes compared with control cells. These results show that integrin alpha(6)beta(4) regulates ErbB2 through translational control. In summary, we propose a novel mechanism for ErbB2 up-regulation and Ras activation in serum-depleted breast cancer cells; integrin alpha(6)beta(4) regulates the expression of ErbB2 and the subsequent phosphorylation of EGFR and activation of Ras. These findings provide a mechanism that substantiates the reported role of alpha(6)beta(4) in carcinoma invasion.


Subject(s)
Breast Neoplasms/metabolism , ErbB Receptors/metabolism , Integrin alpha6beta4/physiology , Receptor, ErbB-2/metabolism , ras Proteins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/biosynthesis , ErbB Receptors/genetics , Eukaryotic Initiation Factor-4E/metabolism , Humans , Integrin alpha6beta4/biosynthesis , Integrin alpha6beta4/deficiency , Integrin alpha6beta4/genetics , Neoplasm Invasiveness , Phosphorylation , Protein Biosynthesis , Quinazolines , RNA, Small Interfering/genetics , Receptor, ErbB-2/biosynthesis , Receptor, ErbB-2/genetics , Signal Transduction , Transcriptional Activation , Transfection , Tyrphostins/pharmacology
13.
Cancer Res ; 78(9): 2191-2204, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29440170

ABSTRACT

Metabolic reprogramming is a hallmark of cancer that includes increased glucose uptake and accelerated aerobic glycolysis. This phenotype is required to fulfill anabolic demands associated with aberrant cell proliferation and is often mediated by oncogenic drivers such as activated BRAF. In this study, we show that the MAPK-activated p90 ribosomal S6 kinase (RSK) is necessary to maintain glycolytic metabolism in BRAF-mutated melanoma cells. RSK directly phosphorylated the regulatory domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), an enzyme that catalyzes the synthesis of fructose-2,6-bisphosphate during glycolysis. Inhibition of RSK reduced PFKFB2 activity and glycolytic flux in melanoma cells, suggesting an important role for RSK in BRAF-mediated metabolic rewiring. Consistent with this, expression of a phosphorylation-deficient mutant of PFKFB2 decreased aerobic glycolysis and reduced the growth of melanoma in mice. Together, these results indicate that RSK-mediated phosphorylation of PFKFB2 plays a key role in the metabolism and growth of BRAF-mutated melanomas.Significance: RSK promotes glycolytic metabolism and the growth of BRAF-mutated melanoma by driving phosphorylation of an important glycolytic enzyme. Cancer Res; 78(9); 2191-204. ©2018 AACR.


Subject(s)
Melanoma/genetics , Phosphofructokinase-2/genetics , Proto-Oncogene Proteins B-raf/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Cell Proliferation/genetics , Cellular Reprogramming/genetics , Glucose/metabolism , Glycolysis/genetics , HeLa Cells , Humans , Melanoma/metabolism , Melanoma/pathology , Phosphorylation
14.
Cancer Res ; 65(7): 2761-9, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15805276

ABSTRACT

Hypoxia plays a key role in tumor cell survival, invasion, and metastasis. Here we show that hypoxia increases tumor cell invasion by the modulation of Rab11, an important molecule for vesicular trafficking, especially membrane protein recycling and translocation of proteins from trans-Golgi network to plasma membrane. Dominant-negative Rab11 dramatically decreased hypoxia-induced invasion of MDA-MB-231 breast carcinoma cells without affecting cell apoptosis. Hypoxia-induced Rab11 trafficking is regulated by microtubule stability, as evidenced by the findings that hypoxia increases Glu tubulin and that colchicine blocks Rab11 trafficking and invasion. Inhibition of GSK-3beta activity by hypoxia seems to be central to microtubule stabilization and invasion. In fact, expression of a dominant-negative GSK-3beta was sufficient to stimulate invasion in normoxia. One target of Rab11-mediated trafficking that contributes to invasion is the integrin alpha6beta4. Hypoxia induced a significant increase in alpha6beta4 surface expression but it had no effect on the surface expression of alpha3beta1. This increase is dependent on Rab11 and stable microtubules. In summary, we identify vesicle trafficking as a novel target of hypoxic stimulation that is important for tumor invasion.


Subject(s)
Breast Neoplasms/pathology , Carcinoma/pathology , Integrin alpha6beta4/metabolism , Microtubules/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Cell Hypoxia/physiology , Cell Line, Tumor , Enzyme Activation , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Humans , Integrin alpha6beta4/biosynthesis , Mice , NIH 3T3 Cells , Neoplasm Invasiveness , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Transfection , rab GTP-Binding Proteins/biosynthesis , rab GTP-Binding Proteins/genetics
15.
Mol Cancer Ther ; 5(11): 2666-75, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17121913

ABSTRACT

Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.


Subject(s)
Biflavonoids/pharmacology , Flavonoids/pharmacology , Matrix Metalloproteinase 9/metabolism , Neoplasms/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Breast Neoplasms/metabolism , Dose-Response Relationship, Drug , Female , Fibrosarcoma/metabolism , Humans , Matrix Metalloproteinase Inhibitors , Neoplasm Invasiveness , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tumor Cells, Cultured , NF-kappaB-Inducing Kinase
16.
Cancer Res ; 76(16): 4816-27, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27197195

ABSTRACT

mTORC1 is a central signaling node in controlling cell growth, proliferation, and metabolism that is aberrantly activated in cancers and certain cancer-associated genetic disorders, such as tuberous sclerosis complex (TSC) and sporadic lymphangioleiomyomatosis. However, while mTORC1-inhibitory compounds (rapamycin and rapalogs) attracted interest as candidate therapeutics, clinical trials have not replicated the promising findings in preclinical models, perhaps because these compounds tend to limit cell proliferation without inducing cell death. In seeking to address this issue, we performed a high-throughput screen for small molecules that could heighten the cytotoxicity of mTORC1 inhibitors. Here we report the discovery that combining inhibitors of mTORC1 and glutamate cysteine ligase (GCLC) can selectively and efficiently trigger apoptosis in Tsc2-deficient cells but not wild-type cells. Mechanistic investigations revealed that coinhibition of mTORC1 and GCLC decreased the level of the intracellular thiol antioxidant glutathione (GSH), thereby increasing levels of reactive oxygen species, which we determined to mediate cell death in Tsc2-deficient cells. Our findings offer preclinical proof of concept for a strategy to selectively increase the cytotoxicity of mTORC1 inhibitors as a therapy to eradicate tumor cells marked by high mTORC1 signaling, based on cotargeting a GSH-controlled oxidative stress pathway. Cancer Res; 76(16); 4816-27. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Multiprotein Complexes/antagonists & inhibitors , Oxidative Stress/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, SCID , Microscopy, Confocal , Microscopy, Electron, Transmission , Polymerase Chain Reaction , Reactive Oxygen Species , Sirolimus/pharmacology , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
17.
Mol Cells ; 38(5): 409-15, 2015 May.
Article in English | MEDLINE | ID: mdl-25947291

ABSTRACT

Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ(5)-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ(5)-3-ketosteroid to its conjugated Δ(4)-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 Oη and C3-O of equilenin, an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 Oη and C3-O of the bound steroid was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1-11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7-2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.


Subject(s)
Equilenin/metabolism , Pseudomonas putida/enzymology , Steroid Isomerases/chemistry , Steroid Isomerases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Equilenin/chemistry , Hydrogen Bonding , Models, Molecular , Mutation , Protein Binding , Proton Magnetic Resonance Spectroscopy , Pseudomonas putida/genetics , Steroid Isomerases/metabolism , Substrate Specificity
18.
Cancer Res ; 74(1): 201-11, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24247720

ABSTRACT

Deregulation of translation initiation factors contributes to many pathogenic conditions, including cancer. Here, we report the definition of a novel regulatory pathway for translational initiation with possible therapeutic import in cancer. Specifically, we found that casein kinase 1ε (CK1ε) is highly expressed in breast tumors and plays a critical role in cancer cell proliferation by controlling mRNA translation. Eukaryotic translation initiation factor eIF4E, an essential component of the translation initiation complex eIF4F, is downregulated by binding the negative-acting factor 4E-BP1. We found that genetic or pharmacologic inhibition of CK1ε attenuated 4E-BP1 phosphorylation, thereby increasing 4E-BP1 binding to eIF4E and inhibiting mRNA translation. Mechanistic investigations showed that CK1ε interacted with and phosphorylated 4E-BP1 at two novel sites T41 and T50, which were essential for 4E-BP1 inactivation along with increased mRNA translation and cell proliferation. In summary, our work identified CK1ε as a pivotal regulator of mRNA translation and cell proliferation that acts by inhibiting 4E-BP1 function. As CK1ε is highly expressed in breast tumors, these findings offer an initial rationale to explore CK1ε blockade as a therapeutic strategy to treat cancers driven by deregulated mRNA translation.


Subject(s)
Breast Neoplasms/enzymology , Casein Kinase 1 epsilon/metabolism , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Death/genetics , Cell Death/physiology , Cell Growth Processes/genetics , Cell Growth Processes/physiology , Cell Line, Tumor , Eukaryotic Initiation Factors , Female , HEK293 Cells , Humans , Mice , Mice, Nude , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , RNA, Messenger/genetics
19.
Int J Cell Biol ; 2012: 516789, 2012.
Article in English | MEDLINE | ID: mdl-22121362

ABSTRACT

Integrins are major mediators of cancer cell adhesion to extracellular matrix. Through this interaction, integrins play critical roles in cell migration, invasion, metastasis, and resistance to apoptosis during tumor progression. Recent studies highlight the importance of integrin trafficking, endocytosis and recycling, for the functions of integrins in cancer cells. Understanding the molecular mechanisms of integrin trafficking is pivotal for understanding tumor progression and for the development of anticancer drugs.

20.
Mol Cell ; 29(3): 362-75, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18280241

ABSTRACT

The major participants of the Ras/ERK and PI3-kinase (PI3K) pathways are well characterized. The cellular response to activation of these pathways, however, can vary dramatically. How differences in signal strength, timing, spatial location, and cellular context promote specific cell-fate decisions remains unclear. Nuclear transport processes can have a major impact on the determination of cell fate; however, little is known regarding how nuclear transport is regulated by or regulates these pathways. Here we show that RSK and Akt, which are activated downstream of Ras/ERK and PI3K, respectively, modulate the Ran gradient and nuclear transport by interacting with, phosphorylating, and regulating Ran-binding protein 3 (RanBP3) function. Our findings highlight an important link between two major cell-fate determinants: nuclear transport and the Ras/ERK/RSK and PI3K/Akt signaling pathways.


Subject(s)
Cell Nucleus/metabolism , Nuclear Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , ras Proteins/metabolism , Active Transport, Cell Nucleus , Enzyme Activation , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL