Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Nucleic Acids Res ; 51(8): 3934-3949, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36912080

ABSTRACT

The RNA exosome is an essential 3' to 5' exoribonuclease complex that mediates degradation, processing and quality control of virtually all eukaryotic RNAs. The nucleolar RNA exosome, consisting of a nine-subunit core and a distributive 3' to 5' exonuclease EXOSC10, plays a critical role in processing and degrading nucleolar RNAs, including pre-rRNA. However, how the RNA exosome is regulated in the nucleolus is poorly understood. Here, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the nucleolar RNA exosome. USP36 binds to the RNA exosome through direct interaction with EXOSC10 in the nucleolus. Interestingly, USP36 does not significantly regulate the levels of EXOSC10 and other tested exosome subunits. Instead, it mediates EXOSC10 SUMOylation at lysine (K) 583. Mutating K583 impaired the binding of EXOSC10 to pre-rRNAs, and the K583R mutant failed to rescue the defects in rRNA processing and cell growth inhibition caused by knockdown of endogenous EXOSC10. Furthermore, EXOSC10 SUMOylation is markedly reduced in cells in response to perturbation of ribosomal biogenesis. Together, these results suggest that USP36 acts as a SUMO ligase to promote EXOSC10 SUMOylation critical for the RNA exosome function in ribosome biogenesis.


Subject(s)
Exoribonucleases , Exosome Multienzyme Ribonuclease Complex , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , RNA/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Humans , Cell Line
2.
Blood ; 139(8): 1208-1221, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34482403

ABSTRACT

Inherited predisposition to myeloid malignancies is more common than previously appreciated. We analyzed the whole-exome sequencing data of paired leukemia and skin biopsy samples from 391 adult patients from the Beat AML 1.0 consortium. Using the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines for variant interpretation, we curated 1547 unique variants from 228 genes. The pathogenic/likely pathogenic (P/LP) germline variants were identified in 53 acute myeloid leukemia (AML) patients (13.6%) in 34 genes, including 6.39% (25/391) of patients harboring P/LP variants in genes considered clinically actionable (tier 1). 41.5% of the 53 patients with P/LP variants were in genes associated with the DNA damage response. The most frequently mutated genes were CHEK2 (8 patients) and DDX41 (7 patients). Pathogenic germline variants were also found in new candidate genes (DNAH5, DNAH9, DNMT3A, and SUZ12). No strong correlation was found between the germline mutational rate and age of AML onset. Among 49 patients who have a reported history of at least one family member affected with hematological malignancies, 6 patients harbored known P/LP germline variants and the remaining patients had at least one variant of uncertain significance, suggesting a need for further functional validation studies. Using CHEK2 as an example, we show that three-dimensional protein modeling can be one of the effective methodologies to prioritize variants of unknown significance for functional studies. Further, we evaluated an in silico approach that applies ACMG curation in an automated manner using the tool for assessment and (TAPES) prioritization in exome studies, which can minimize manual curation time for variants. Overall, our findings suggest a need to comprehensively understand the predisposition potential of many germline variants in order to enable closer monitoring for disease management and treatment interventions for affected patients and families.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Age Factors , Aged , Female , Humans , Male , Middle Aged
3.
Biochemistry ; 62(11): 1735-1743, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37167569

ABSTRACT

Genetic tags are transformative tools for investigating the function, localization, and interactions of cellular proteins. Most studies today are reliant on selective labeling of more than one protein to obtain comprehensive information on a protein's behavior in situ. Some proteins can be analyzed by fusion to a protein tag, such as green fluorescent protein, HaloTag, or SNAP-Tag. Other proteins benefit from labeling via small peptide tags, such as the recently reported versatile interacting peptide (VIP) tags. VIP tags enable observations of protein localization and trafficking with bright fluorophores or nanoparticles. Here, we expand the VIP toolkit by presenting two new tags: TinyVIPER and PunyVIPER. These two tags were designed for use with MiniVIPER for labeling up to three distinct proteins at once in cells. Labeling is mediated by the formation of a high-affinity, biocompatible heterodimeric coiled coil. Each tag was validated by fluorescence microscopy, including observation of transferrin receptor 1 trafficking in live cells. We verified that labeling via each tag is highly specific for one- or two-color imaging. Last, the self-sorting tags were used for simultaneous labeling of three protein targets (i.e., TOMM20, histone 2B, and actin) in fixed cells, highlighting their utility for multicolor microscopy. MiniVIPER, TinyVIPER, and PunyVIPER are small and robust peptide tags for selective labeling of cellular proteins.


Subject(s)
Fluorescent Dyes , Peptides , Green Fluorescent Proteins/genetics , Histones , Microscopy, Fluorescence/methods , Staining and Labeling
4.
J Cell Sci ; 130(11): 1865-1876, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28476937

ABSTRACT

Vertebrate proteins that fulfill multiple and seemingly disparate functions are increasingly recognized as vital solutions to maintaining homeostasis in the face of the complex cell and tissue physiology of higher metazoans. However, the molecular adaptations that underpin this increased functionality remain elusive. In this Commentary, we review the PACS proteins - which first appeared in lower metazoans as protein traffic modulators and evolved in vertebrates to integrate cytoplasmic protein traffic and interorganellar communication with nuclear gene expression - as examples of protein adaptation 'caught in the act'. Vertebrate PACS-1 and PACS-2 increased their functional density and roles as metabolic switches by acquiring phosphorylation sites and nuclear trafficking signals within disordered regions of the proteins. These findings illustrate one mechanism by which vertebrates accommodate their complex cell physiology with a limited set of proteins. We will also highlight how pathogenic viruses exploit the PACS sorting pathways as well as recent studies on PACS genes with mutations or altered expression that result in diverse diseases. These discoveries suggest that investigation of the evolving PACS protein family provides a rich opportunity for insight into vertebrate cell and organ homeostasis.


Subject(s)
Homeostasis/genetics , Neoplasms/genetics , Neurodegenerative Diseases/genetics , Obesity/genetics , Vesicular Transport Proteins/genetics , Adaptation, Biological , Animals , Apoptosis , Biological Transport , Calcium Signaling , Conserved Sequence , Gene Expression Regulation , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Obesity/metabolism , Obesity/pathology , Phylogeny , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , Vesicular Transport Proteins/metabolism
5.
J Biol Chem ; 290(38): 23214-25, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26229104

ABSTRACT

The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.


Subject(s)
Proprotein Convertase 1/chemistry , Animals , COS Cells , Chlorocebus aethiops , Enzyme Activation , Histidine/chemistry , Humans , Hydrogen-Ion Concentration
6.
Proc Natl Acad Sci U S A ; 110(48): 19519-24, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24218589

ABSTRACT

The rapidly growing recognition of the role of oncogenic ROS1 fusion proteins in the malignant transformation of multiple cancers, including lung adenocarcinoma, cholangiocarcinoma, and glioblastoma, is driving efforts to develop effective ROS1 inhibitors for use as molecularly targeted therapy. Using a multidisciplinary approach involving small molecule screening in combination with in vitro and in vivo tumor models, we show that foretinib (GSK1363089) is a more potent ROS1 inhibitor than crizotinib (PF-02341066), an ALK/ROS inhibitor currently in clinical evaluation for lung cancer patients harboring ROS1 rearrangements. Whereas crizotinib has demonstrated promising early results in patients with ROS1-rearranged non-small-cell lung carcinoma, recently emerging clinical evidence suggests that patients may develop crizotinib resistance due to acquired point mutations in the kinase domain of ROS1, thus necessitating identification of additional potent ROS1 inhibitors for therapeutic intervention. We confirm that the ROS1(G2032R) mutant, recently reported in clinical resistance to crizotinib, retains foretinib sensitivity at concentrations below safe, clinically achievable levels. Furthermore, we use an accelerated mutagenesis screen to preemptively identify mutations in the ROS1 kinase domain that confer resistance to crizotinib and demonstrate that these mutants also remain foretinib sensitive. Taken together, our data strongly suggest that foretinib is a highly effective ROS1 inhibitor, and further clinical investigation to evaluate its potential therapeutic benefit for patients with ROS1-driven malignancies is warranted.


Subject(s)
Anilides/pharmacology , Oncogenes/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Quinolines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Base Sequence , Cell Line, Tumor , Cell Survival/drug effects , DNA Primers/genetics , Flow Cytometry , Mice , Molecular Sequence Data , Mutagenesis , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Sequence Analysis, DNA
7.
J Biol Chem ; 289(13): 8799-809, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24497645

ABSTRACT

Equilibrative nucleoside transporters of the SLC29 family play important roles in many physiological and pharmacological processes, including import of drugs for treatment of cancer, AIDS, cardiovascular, and parasitic diseases. However, no crystal structure is available for any member of this family. In previous studies we generated a computational model of the Leishmania donovani nucleoside transporter 1.1 (LdNT1.1) that captured this permease in the outward-closed conformation, and we identified the extracellular gate. In the present study we have modeled the inward-closed conformation of LdNT1.1 using the crystal structure of the Escherichia coli fucose transporter FucP and have identified four transmembrane helices whose ends close to form a predicted intracellular gate. We have tested this prediction by site-directed mutagenesis of relevant helix residues and by cross-linking of introduced cysteine pairs. The results are consistent with the predictions of the computational model and suggest that a similarly constituted gate operates in other members of the equilibrative nucleoside transporter family.


Subject(s)
Intracellular Space/metabolism , Nucleoside Transport Proteins/metabolism , Protozoan Proteins/metabolism , Conserved Sequence , Hydrophobic and Hydrophilic Interactions , Leishmania donovani , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Nucleoside Transport Proteins/chemistry , Nucleoside Transport Proteins/genetics , Protein Conformation , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Alignment , Sequence Homology , Sulfhydryl Compounds/chemistry
8.
J Biol Chem ; 289(8): 5097-108, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24403071

ABSTRACT

Ovarian tumor domain-containing ubiquitin (Ub) aldehyde binding protein 1 (Otub1) regulates p53 stability and activity via non-canonical inhibition of the MDM2 cognate Ub-conjugating enzyme (E2) UbcH5. However, it is not clear how this activity of Otub1 is regulated in cells. Here we report that Otub1 is monoubiquitinated by UbcH5 in cells and in vitro, primarily at the lysine 59 and 109 residues. This monoubiquitination, in turn, contributes to the activity of Otub1 to suppress UbcH5. The lysine-free Otub1 mutant (Otub1(K0)) fails to be monoubiquitinated and is unable to suppress the Ub-conjugating activity of UbcH5 in vitro and the MDM2-mediated p53 ubiquitination in cells. Consistently, this mutant is unable to stabilize p53, induce apoptosis, and suppress cell proliferation. Overexpression of Otub1(K0) inhibits DNA-damage induced apoptosis. Adding either Lys-59 or Lys-109 back to the Otub1(K0) mutant restores the monoubiquitination of Otub1 and its function to stabilize and activate p53. We further show that UbcH5 preferentially binds to the monoubiquitinated Otub1 via Ub interaction with its backside donor Ub-interacting surface, suggesting that this binding interferes with the self-assembly of Ub-charged UbcH5 (UbcH5∼Ub) conjugates, which is critical for Ub transfer. Thus, our data reveal novel insights into the Otub1 inhibition of E2 wherein monoubiquitination promotes the interaction of Otub1 with UbcH5 and the function to suppress it.


Subject(s)
Ovarian Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , Amino Acid Sequence , Cell Line, Tumor , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , DNA Damage , Deubiquitinating Enzymes , Female , Humans , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Stability , Proto-Oncogene Proteins c-mdm2/metabolism
9.
Anal Chem ; 87(15): 7909-17, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26110992

ABSTRACT

Propeptides of proprotein convertases regulate activation of their protease domains by sensing the organellar pH within the secretory pathway. Earlier experimental work highlighted the importance of a conserved histidine residue within the propeptide of a widely studied member, furin. A subsequent evolutionary analysis found an increase in histidine content within propeptides of secreted eukaryotic proteases compared with their prokaryotic orthologs. However, furin activates in the trans-golgi network at a pH of 6.5 while a paralog, proprotein convertase 1/3, activates in secretory vesicles at a pH of 5.5. It is unclear how a conserved histidine can mediate activation at two different pH values. In this manuscript, we measured the pKa values of histidines within the propeptides of furin and proprotein convertase 1/3 using a histidine hydrogen-deuterium exchange mass spectrometry approach. The high density of histidine residues combined with an abundance of basic residues provided challenges for generation of peptide ions with unique histidine residues, which were overcome by employing ETD fragmentation. During this analysis, we found slow hydrogen-deuterium exchange in residues other than histidine at basic pH. Finally, we demonstrate that the pKa of the conserved histidine in proprotein convertase 1/3 is acid-shifted compared with furin and is consistent with its lower pH of activation.


Subject(s)
Furin/chemistry , Mass Spectrometry , Models, Molecular , Peptides/chemistry , Proprotein Convertase 1/chemistry , Proprotein Convertases/chemistry , Amino Acid Sequence , Deuterium/chemistry , Histidine/chemistry , Hydrogen/chemistry , Hydrogen-Ion Concentration , Molecular Sequence Data , Peptides/genetics
10.
J Biol Chem ; 288(26): 19154-65, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23653353

ABSTRACT

The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation.


Subject(s)
Furin/chemistry , Histidine/chemistry , Peptides/chemistry , Circular Dichroism , Enzyme Activation , Glycerol/chemistry , Humans , Hydrogen-Ion Concentration , Molecular Chaperones/chemistry , Molecular Dynamics Simulation , Protein Folding , Protons , Thermodynamics , Time Factors , Urea/chemistry
11.
J Biol Chem ; 288(41): 29954-64, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23986453

ABSTRACT

The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT. To characterize this unique parasite enzyme, LdUPRT was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Kinetic analysis revealed apparent Km values of 20 and 99 µM for the natural substrates uracil and phosphoribosylpyrophosphate, respectively, as well as apparent Km values 6 and 7 µM for the pyrimidine analogs 5-fluorouracil and 4-thiouracil, respectively. Size exclusion chromatography revealed the native LdUPRT to be tetrameric and retained partial structure and activity in high concentrations of urea. L. donovani mutants deficient in de novo pyrimidine biosynthesis, which require functional LdUPRT for growth, are hypersensitive to high concentrations of uracil, 5-fluorouracil, and 4-thiouracil in the growth medium. This hypersensitivity can be explained by the observation that LdUPRT is substrate-inhibited by uracil and 4-thiouracil, but 5-fluorouracil toxicity transpires via an alternative mechanism. This substrate inhibition of LdUPRT provides a protective mechanism for the parasite by facilitating purine and pyrimidine nucleotide pool balance and by sparing phosphoribosylpyrophosphate for consumption by the nutritionally indispensable purine salvage process.


Subject(s)
Leishmania donovani/enzymology , Pentosyltransferases/metabolism , Protozoan Proteins/metabolism , Pyrimidines/biosynthesis , Uracil/metabolism , Cations, Divalent/chemistry , Cations, Divalent/metabolism , Chromatography, Gel , Enzyme Stability , Feedback, Physiological/drug effects , Fluorouracil/metabolism , Hydrogen-Ion Concentration , Kinetics , Leishmania donovani/genetics , Leishmania donovani/metabolism , Mutation , Pentosyltransferases/chemistry , Pentosyltransferases/genetics , Phosphoribosyl Pyrophosphate/metabolism , Protein Multimerization , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Pyrimidines/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrophotometry , Substrate Specificity , Temperature , Thiouracil/analogs & derivatives , Thiouracil/metabolism
12.
J Cell Sci ; 125(Pt 14): 3293-8, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22467850

ABSTRACT

Many of the cilia- and flagella-specific integral membrane proteins identified to date function to sense the extracellular milieu, and there is considerable interest in defining pathways for targeting such proteins to these sensory organelles. The flagellar glucose transporter of Leishmania mexicana, LmxGT1, is targeted selectively to the flagellar membrane, whereas two other isoforms, LmxGT2 and LmxGT3, are targeted to the pellicular plasma membrane of the cell body. To define the flagellar targeting signal, deletions and point mutations were generated in the N-terminal hydrophilic domain of LmxGT1, which mediates flagellar localization. Three amino acids, N95-P96-M97, serve critical roles in flagellar targeting, resulting in strong mistargeting phenotypes when mutagenized. However, to facilitate flagellar targeting of other non-flagellar membrane proteins, it was necessary to attach a larger region surrounding the NPM motif containing amino acids 81-113. Molecular modeling suggests that this region might present the critical NPM residues at the surface of the N-terminal domain. It is likely that the NPM motif is recognized by currently unknown protein-binding partners that mediate flagellar targeting of membrane-associated proteins.


Subject(s)
Flagella/metabolism , Monosaccharide Transport Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Green Fluorescent Proteins/metabolism , Leishmania mexicana/genetics , Leishmania mexicana/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Protein Structure, Tertiary
13.
FASEB J ; 27(8): 2939-45, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23585398

ABSTRACT

Eukaryotic cells maintain strict control over protein secretion, in part by using the pH gradient maintained within their secretory pathway. How eukaryotic proteins evolved from prokaryotic orthologs to exploit the pH gradient for biological functions remains a fundamental question in cell biology. Our laboratory previously demonstrated that protein domains located within precursor proteins, propeptides, encode histidine-driven pH sensors to regulate organelle-specific activation of the eukaryotic proteases furin and proprotein convertase-1/3. Similar findings have been reported in other unrelated protease families. By analyzing >10,000 unique proteases within evolutionarily unrelated families, we show that eukaryotic propeptides are enriched in histidines compared with prokaryotic orthologs. On this basis, we hypothesize that eukaryotic proteins evolved to enrich histidines within their propeptides to exploit the tightly controlled pH gradient of the secretory pathway, thereby regulating activation within specific organelles. Enrichment of histidines in propeptides may therefore be used to predict the presence of pH sensors in other proteases or even protease substrates.


Subject(s)
Eukaryotic Cells/enzymology , Histidine/metabolism , Organelles/metabolism , Peptide Hydrolases/metabolism , Secretory Pathway , Animals , Caspases/metabolism , Cathepsin B/metabolism , Cathepsins/metabolism , Enzyme Precursors/metabolism , Humans , Hydrogen-Ion Concentration , Models, Biological , Organelles/chemistry , Subtilisins/metabolism
14.
Biochem J ; 452(1): 87-95, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23464809

ABSTRACT

HJV (haemojuvelin) plays a key role in iron metabolism in mammals by regulating expression of the liver-derived hormone hepcidin, which controls systemic iron uptake and release. Mutations in HJV cause juvenile haemochromatosis, a rapidly progressing iron overload disorder in humans. HJV, also known as RGMc (repulsive guidance molecule c), is a member of the three-protein RGM family. RGMs are GPI (glycosylphosphatidylinositol)-linked glycoproteins that share ~50% amino acid identity and several structural motifs, including the presence of 14 cysteine residues in analogous locations. Unlike RGMa and RGMb, HJV/RGMc is composed of both single-chain and two-chain isoforms. To date there is no structural information for any member of the RGM family. In the present study we have mapped the disulfide bonds in mouse HJV/RGMc using a proteomics strategy combining sequential MS steps composed of ETD (electron transfer dissociation) and CID (collision-induced dissociation), in which ETD induces cleavage of disulfide linkages, and CID establishes disulfide bond assignments between liberated peptides. The results of the present study identified an HJV/RGMc molecular species containing four disulfide linkages. We predict using ab initio modelling that this molecule is a single-chain HJV/RGMc isoform. Our observations outline a general approach using tandem MS and ab initio molecular modelling to define unknown structural features in proteins.


Subject(s)
Iron-Regulatory Proteins/chemistry , Membrane Proteins/chemistry , Models, Molecular , Proteomics/methods , Amino Acid Sequence , Animals , Disulfides/chemistry , GPI-Linked Proteins , HEK293 Cells , Hemochromatosis Protein , Humans , Iron-Regulatory Proteins/genetics , Membrane Proteins/genetics , Mice , Molecular Sequence Data , Protein Isoforms/chemistry , Protein Isoforms/genetics
15.
FEBS Lett ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198717

ABSTRACT

The Mycobacterium tuberculosis (Mtb) cell envelope provides a protective barrier against the immune response and antibiotics. The mycobacterial membrane protein large (MmpL) family of proteins export cell envelope lipids and siderophores; therefore, these proteins are important for the basic biology and pathogenicity of Mtb. In particular, MmpL3 is essential and a known drug target. Despite interest in MmpL3, the structural data in the field are incomplete. Utilizing homology modeling, AlphaFold, and biophysical techniques, we characterized the cytoplasmic C-terminal domain (CTD) of MmpL3 to better understand its structure and function. Our in silico models of the MmpL11TB and MmpL3TB CTD reveal notable features including a long unstructured linker that connects the globular domain to the last transmembrane (TM) in each transporter, charged lysine and arginine residues facing the membrane, and a C-terminal alpha helix. Our predicted overall structure enables a better understanding of these transporters.

16.
Biochem Pharmacol ; : 116228, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643909

ABSTRACT

Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.

17.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-37645775

ABSTRACT

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.

18.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805257

ABSTRACT

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Macrophages , Mycobacterium tuberculosis , Phagosomes , Single-Domain Antibodies , Humans , Antigens, Bacterial/metabolism , Antigens, Bacterial/immunology , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Molecular Dynamics Simulation , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Phagosomes/metabolism , Single-Domain Antibodies/metabolism
19.
J Biol Chem ; 287(53): 44036-45, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23150661

ABSTRACT

Equilibrative nucleoside transporters are a unique family of proteins that enable uptake of nucleosides/nucleobases into a wide range of eukaryotes and internalize a myriad of drugs used in the treatment of cancer, heart disease, AIDs, and parasitic infections. In previous work we generated a structural model for such a transporter, the LdNT1.1 nucleoside permease from the parasitic protozoan Leishmania donovani, using ab initio computation. The model suggested that aromatic residues present in transmembrane helices 1, 2, and 7 interact to form an extracellular gate that closes the permeation pathway in the inward-open conformation. Mutation of residues Phe-48(TM1) and Trp-75(TM2) abrogated transport activity, consistent with such prediction. In this study cysteine mutagenesis and oxidative cross-linking were combined to analyze proximity relationships of helices 1, 2, and 7 in LdNT1.1. Disulfide bond formation between introduced paired cysteines at the interface of such helices (A61C(TM1)/F74C(TM2), A61C(TM1)/G350C(TM7), and F74C(TM2)/G350C(TM7)) was analyzed by transport measurement and gel mobility shifts upon oxidation with Cu (II)-(1,10-phenanthroline)(3). In all cases cross-linking inhibited transport. However, if LdNT1.1 ligands were included during cross-linking, inhibition of transport was reduced, suggesting that ligands moved the three gating helices apart. Moreover, all paired cysteine mutants exhibited a mobility shift upon oxidation, corroborating the formation of a disulfide bond. These data support the notion that helices 1, 2, and 7 constitute the extracellular gate of LdNT1.1, thus further validating the computational model and the previously demonstrated importance of F48(TM1) and Trp-75(TM2) in tethering together helices that are part of the gate.


Subject(s)
Cysteine/chemistry , Leishmania donovani/metabolism , Nucleosides/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Amino Acid Motifs , Cysteine/genetics , Cysteine/metabolism , Leishmania donovani/chemistry , Leishmania donovani/genetics , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/genetics
20.
J Biol Chem ; 287(2): 1510-9, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22117064

ABSTRACT

The six high-affinity insulin-like growth factor-binding proteins (IGFBPs) comprise a conserved family of secreted molecules that modulate IGF actions by regulating their half-life and access to signaling receptors, and also exert biological effects that are independent of IGF binding. IGFBPs are composed of cysteine-rich amino- (N-) and carboxyl- (C-) terminal domains, along with a cysteine-poor central linker segment. IGFBP-5 is the most conserved IGFBP, and contains 18 cysteines, but only 2 of 9 putative disulfide bonds have been mapped to date. Using a mass spectrometry (MS)-based strategy combining sequential electron transfer dissociation (ETD) and collision-induced dissociation (CID) steps, in which ETD fragmentation preferentially induces cleavage of disulfide bonds, and CID provides exact disulfide linkage assignments between liberated peptides, we now have definitively mapped 5 disulfide bonds in IGFBP-5. In addition, in conjunction with ab initio molecular modeling we are able to assign the other 4 disulfide linkages to within a GCGCCXXC motif that is conserved in five IGFBPs. Because of the nature of ETD fragmentation MS experiments were performed without chemical reduction of IGFBP-5. Our results not only establish a disulfide bond map of IGFBP-5 but also define a general approach that takes advantage of the specificity of ETD and the scalability of tandem MS, and the predictive power of ab initio molecular modeling to characterize unknown disulfide linkages in proteins.


Subject(s)
Disulfides/chemistry , Insulin-Like Growth Factor Binding Protein 5/chemistry , Models, Molecular , Peptide Mapping/methods , Amino Acid Motifs , Animals , Cell Line , Cysteine , Humans , Insulin-Like Growth Factor Binding Protein 5/genetics , Mass Spectrometry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL