Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Monit Assess ; 189(11): 574, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29046968

ABSTRACT

Environmental surveillance of waterborne pathogens is vital for monitoring the spread of diseases, and electropositive filters are frequently used for sampling wastewater and wastewater-impacted surface water. Viruses adsorbed to electropositive filters require elution prior to detection or quantification. Elution is typically facilitated by a peristaltic pump, although this requires a significant startup cost and does not include biosafety or cross-contamination considerations. These factors may pose a barrier for low-resource laboratories that aim to conduct environmental surveillance of viruses. The objective of this study was to develop a biologically enclosed, manually powered, low-cost device for effectively eluting from electropositive ViroCap™ virus filters. The elution device described here utilizes a non-electric bilge pump, instead of an electric peristaltic pump or a positive pressure vessel. The elution device also fully encloses liquids and aerosols that could contain biological organisms, thereby increasing biosafety. Moreover, all elution device components that are used in the biosafety cabinet are autoclavable, reducing cross-contamination potential. This device reduces costs of materials while maintaining convenience in terms of size and weight. With this new device, there is little sample volume loss due to device inefficiency, similar virus yields were demonstrated during seeded studies with poliovirus type 1, and the time to elute filters is similar to that required with the peristaltic pump. The efforts described here resulted in a novel, low-cost, manually powered elution device that can facilitate environmental surveillance of pathogens through effective virus recovery from ViroCap filters while maintaining the potential for adaptability to other cartridge filters.


Subject(s)
Environmental Monitoring/methods , Filtration/methods , Wastewater/virology , Water Microbiology , Adsorption , Humans , Hydrogen-Ion Concentration , Poliovirus , Water
2.
PLoS One ; 13(7): e0200551, 2018.
Article in English | MEDLINE | ID: mdl-30011304

ABSTRACT

Poliovirus (PV) environmental surveillance (ES) plays an important role in the global eradication program and is crucial for monitoring silent PV circulation especially as clinical cases decrease. This study compared ES results using the novel bag-mediated filtration system (BMFS) with the current two-phase separation method. From February to November 2016, BMFS and two-phase samples were collected concurrently from twelve sites in Pakistan (n = 117). Detection was higher in BMFS than two-phase samples for each Sabin-like (SL) PV serotype (p<0.001) and wild PV type 1 (WPV1) (p = 0.065). Seventeen sampling events were positive for WPV1, with eight discordant in favor of BMFS and two in favor of two-phase. A vaccine-derived PV type 2 was detected in one BMFS sample but not the matched two-phase. After the removal of SL PV type 2 (SL2) from the oral polio vaccine in April 2016, BMFS samples detected SL2 more frequently than two-phase (p = 0.016), with the last detection by either method occurring June 12, 2016. More frequent PV detection in BMFS compared to two-phase samples is likely due to the greater effective volume assayed (1620 mL vs. 150 mL). This study demonstrated that the BMFS achieves enhanced ES for all PV serotypes in an endemic country.


Subject(s)
Environmental Monitoring , Filtration , Poliovirus , Serogroup , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Filtration/instrumentation , Filtration/methods , Humans , Pakistan/epidemiology , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus/genetics , Poliovirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL