ABSTRACT
PURPOSE: Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA. METHODS: A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets. RESULTS: Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis. CONCLUSIONS: TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.
Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Oligodendroglioma , Humans , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/pathology , Oligodendroglioma/pathology , Mutation , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Astrocytoma/pathology , Protein-Tyrosine Kinases/genetics , Biomarkers , Isocitrate Dehydrogenase/geneticsABSTRACT
BACKGROUND AND OBJECTIVE: Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease associated with the functional tumour suppressor genes TSC1 and TSC2 and causes structural destruction in the lungs, which could potentially increase the risk of lung cancer. However, this relationship remains unclear because of the rarity of the disease. METHODS: We investigated the relative risk of developing lung cancer among patients diagnosed with LAM between 2001 and 2022 at a single high-volume centre in Japan, using data from the Japanese Cancer Registry as the reference population. Next-generation sequencing (NGS) was performed in cases where tumour samples were available. RESULTS: Among 642 patients diagnosed with LAM (sporadic LAM, n = 557; tuberous sclerosis complex-LAM, n = 80; unclassified, n = 5), 13 (2.2%) were diagnosed with lung cancer during a median follow-up period of 5.13 years. All patients were female, 61.5% were never smokers, and the median age at lung cancer diagnosis was 53 years. Eight patients developed lung cancer after LAM diagnosis. The estimated incidence of lung cancer was 301.4 cases per 100,000 person-years, and the standardized incidence ratio was 13.6 (95% confidence interval, 6.2-21.0; p = 0.0008). Actionable genetic alterations were identified in 38.5% of the patients (EGFR: 3, ALK: 1 and ERBB2: 1). No findings suggested loss of TSC gene function in the two patients analysed by NGS. CONCLUSION: Our study revealed that patients diagnosed with LAM had a significantly increased risk of lung cancer. Further research is warranted to clarify the carcinogenesis of lung cancer in patients with LAM.
Subject(s)
Lung Neoplasms , Lymphangioleiomyomatosis , Humans , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/epidemiology , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Female , Japan/epidemiology , Middle Aged , Risk Factors , Adult , Incidence , Aged , Cohort Studies , Male , Registries , East Asian PeopleABSTRACT
For non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations, the initial therapeutic interventions will have crucial impacts on their clinical outcomes. Drug tolerant factors reportedly have an impact on EGFR-tyrosine kinase inhibitor sensitivity. This prospective study investigated the impacts of drug tolerant-related protein expression in tumors based on the efficacy of osimertinib in the first-setting of EGFR-mutated advanced NSCLC patients. A total of 92 patients with EGFR-mutated advanced or postoperative recurrent NSCLC were analyzed and treated with osimertinib at 14 institutions in Japan. AXL, p53, and programmed death-ligand 1 (PD-L1) expression in patient tumors was determined using immunohistochemistry. The AXL signaling pathway was investigated using a cell line-based assay and AXL-related gene expression in The Cancer Genome Atlas (TCGA) database. High levels of AXL and positive-p53 expression were detected in 26.1% and 53.3% of the pretreatment EGFR-mutated NSCLC tumors, respectively. High AXL expression levels were significantly associated with a shorter progression-free survival compared with low AXL expression levels, irrespective of the EGFR activating mutation status (p = 0.026). Cell line-based assays indicated that the overexpression of AXL protein accelerated PD-L1 expression, which induced insensitivity to osimertinib. In the TCGA database, AXL RNA levels were positively correlated with PD-L1 expression in the lung adenocarcinoma cohort. The results show that high AXL expression levels in tumors impact clinical predictions when using osimertinib to treat EGFR-mutated NSCLC patients. Trial Registration: UMIN000043942.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , B7-H1 Antigen/metabolism , Prospective Studies , Tumor Suppressor Protein p53/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , ErbB Receptors , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic useABSTRACT
BACKGROUND: Heterozygous mutations in the transcription factor GATA2 result in a wide spectrum of clinical phenotypes, including monocytopenia and Mycobacterium avium complex (MAC) infection (MonoMAC) syndrome. Patients with MonoMAC syndrome typically are infected by disseminated nontuberculous mycobacteria, fungi, and human papillomavirus, exhibit pulmonary alveolar proteinosis during late adolescence or early adulthood, and manifest with decreased content of dendritic cells (DCs), monocytes, and B and natural killer (NK) cells. CASE PRESENTATION: A 39-year-old woman was diagnosed with MonoMAC syndrome postmortem. Although she was followed up based on the symptoms associated with leukocytopenia that was disguised as sarcoidosis with bone marrow involvement, she developed disseminated nontuberculous mycobacterial infection, fungemia, and MonoMAC syndrome after childbirth. Genetic testing revealed a heterozygous missense mutation in GATA2 (c.1114G > A, p.A372T). Immunohistochemistry and flow cytometry showed the disappearance of DCs and decreased frequency of NK cells in the bone marrow, respectively, after childbirth. CONCLUSIONS: To the best of our knowledge, this is the first study reporting that MonoMAC syndrome can be exacerbated after childbirth, and that immunohistochemistry of bone marrow sections to detect decreased DC content is useful to suspect MonoMAC syndrome.
Subject(s)
Fungemia/diagnosis , GATA2 Deficiency/genetics , GATA2 Transcription Factor/genetics , Leukopenia/diagnosis , Mycobacterium Infections, Nontuberculous/diagnosis , Adult , Anti-Bacterial Agents/therapeutic use , Fatal Outcome , Female , Fungemia/complications , Fungemia/drug therapy , GATA2 Deficiency/complications , Genetic Predisposition to Disease , Humans , Leukopenia/complications , Leukopenia/drug therapy , Lymph Nodes/pathology , Mutation , Mycobacterium Infections, Nontuberculous/complications , Mycobacterium Infections, Nontuberculous/drug therapy , Postpartum Period , Prednisone/therapeutic use , PregnancyABSTRACT
E7820 and Indisulam (E7070) are sulfonamide molecular glues that modulate RNA splicing by degrading the splicing factor RBM39 via ternary complex formation with the E3 ligase adaptor DCAF15. To identify biomarkers of the antitumor efficacy of E7820, we treated patient-derived xenograft (PDX) mouse models established from 42 patients with solid tumors. The overall response rate was 38.1% (16 PDXs), and tumor regression was observed across various tumor types. Exome sequencing of the PDX genome revealed that loss-of-function mutations in genes of the homologous recombination repair (HRR) system, such as ATM, were significantly enriched in tumors that responded to E7820 (p = 4.5 × 103). Interestingly, E7820-mediated double-strand breaks in DNA were increased in tumors with BRCA2 dysfunction, and knockdown of BRCA1/2 transcripts or knockout of ATM, ATR, or BAP1 sensitized cancer cells to E7820. Transcriptomic analyses revealed that E7820 treatment resulted in the intron retention of mRNAs and decreased transcription, especially for HRR genes. This induced HRR malfunction probably leads to the synthetic lethality of tumor cells with homologous recombination deficiency (HRD). Furthermore, E7820, in combination with olaparib, exerted a synergistic effect, and E7820 was even effective in an olaparib-resistant cell line. In conclusion, HRD is a promising predictive biomarker of E7820 efficacy and has a high potential to improve the prognosis of patients with HRD-positive cancers.
ABSTRACT
Mutations in HER2 occur in 2-4% of non-small cell lung cancer (NSCLC) and confer poor prognosis. ERBB-targeting tyrosine kinase inhibitors, approved for treating other HER2-dependent cancers, are ineffective in HER2 mutant NSCLC due to dose-limiting toxicities or suboptimal potency. We report the discovery of zongertinib (BI 1810631), a covalent HER2 inhibitor. Zongertinib potently and selectively blocks HER2, while sparing EGFR, and inhibits the growth of cells dependent on HER2 oncogenic driver events, including HER2-dependent human cancer cells resistant to trastuzumab deruxtecan. Zongertinib displays potent anti-tumor activity in HER2-dependent human NSCLC xenograft models and enhances the activities of antibody-drug conjugates and KRASG12C inhibitors, without causing obvious toxicities. The preclinical efficacy of zongertinib translates in objective responses in patients with HER2-dependent tumors, including cholangiocarcinoma (SDC4-NRG1 fusion) and breast cancer (V777L HER2 mutation) thus supporting the ongoing clinical development of zongertinib.
ABSTRACT
Molecular targets and predictive biomarkers for prognosis in salivary duct carcinoma (SDC) have not been fully identified. We conducted comprehensive molecular profiling to discover novel biomarkers for SDC. A total of 67 SDC samples were examined with DNA sequencing of 464 genes and transcriptome analysis in combination with the clinicopathological characteristics of the individuals. Prognostic biomarkers associated with response to combined androgen blockade (CAB) treatment were explored using mRNA expression data from 27 cases. Oncogenic mutations in receptor tyrosine kinase (RTK) genes or genes in the MAPK pathway were identified in 55 cases (82.1%). Alterations in the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway were identified in 38 cases (56.7%). Interestingly, patient prognosis could be predicted using mRNA expression profiles, but not genetic mutation profiles. The risk score generated from the expression data of a four-gene set that includes the ADAMTS1, DSC1, RNF39, and IGLL5 genes was a significant prognostic marker for overall survival in the cohort (HR = 5.99, 95% confidence interval (CI) = 2.73-13.1, p = 7.8 × 10-6). Another risk score constructed from the expression of CD3E and LDB3 was a strong prognostic marker for progression-free survival for CAB treatment (p = 0.03). Mutations in RTK genes, MAPK pathway genes, and PI3K/AKT pathway genes likely represent key mutations in SDC tumorigenesis. The gene expression profiles identified in this study may be useful for stratifying patients who are good candidates for CAB treatment and may benefit from additional systemic therapies.
ABSTRACT
BACKGROUND: Osimertinib monotherapy is currently the standard of care as a first-line treatment for patients harboring epidermal growth factor receptor (EGFR) mutations; however, some EGFR-mutated non-small cell lung cancer (NSCLC) patients exhibit primary resistance and an insufficient response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Elevated programmed death-ligand 1 (PD-L1) expression in tumors was reported as a negative predictive factor for outcomes of first- or second-generation EGFR-TKIs. METHODS: We prospectively assessed advanced NSCLC patients with EGFR mutations who were treated with osimertinib at 14 institutions in Japan between September 2019 and December 2020. Relationships between outcomes of osimertinib monotherapy and patients' characteristics were reviewed. RESULTS: Seventy-one patients who underwent the tumor PD-L1 test were enrolled. Multivariate analysis identified tumor PD-L1 expression as an independent predictor for progression-free survival (PFS) with osimertinib treatment (P=0.029). The objective-response and disease-control rates for osimertinib treatment were significantly lower in patients demonstrating elevated PD-L1 levels relative to those with low or negative PD-L1 level (P=0.043 and P=0.007, respectively). Furthermore, among patients treated with osimertinib, those with high PD-L1 levels exhibited shorter PFS relative to those with low plus negative PD-L1 level (median PFS: 5.0 vs. 17.4 months; P<0.001). CONCLUSIONS: Elevated tumor PD-L1 expression is associated with poor outcomes of osimertinib monotherapy in previously untreated advanced NSCLC patients with EGFR mutation. Further clinical trials are warranted to accumulate evidence demonstrating the effectiveness of combination therapy with osimertinib for EGFR-mutated advanced NSCLC patients with elevated tumor PD-L1 expression. TRIAL REGISTRATION: UMIN000043942.