Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Publication year range
1.
Cell ; 168(6): 1041-1052.e18, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28283060

ABSTRACT

Most secreted growth factors and cytokines are functionally pleiotropic because their receptors are expressed on diverse cell types. While important for normal mammalian physiology, pleiotropy limits the efficacy of cytokines and growth factors as therapeutics. Stem cell factor (SCF) is a growth factor that acts through the c-Kit receptor tyrosine kinase to elicit hematopoietic progenitor expansion but can be toxic when administered in vivo because it concurrently activates mast cells. We engineered a mechanism-based SCF partial agonist that impaired c-Kit dimerization, truncating downstream signaling amplitude. This SCF variant elicited biased activation of hematopoietic progenitors over mast cells in vitro and in vivo. Mouse models of SCF-mediated anaphylaxis, radioprotection, and hematopoietic expansion revealed that this SCF partial agonist retained therapeutic efficacy while exhibiting virtually no anaphylactic off-target effects. The approach of biasing cell activation by tuning signaling thresholds and outputs has applications to many dimeric receptor-ligand systems.


Subject(s)
Anaphylaxis/metabolism , Hematopoietic Stem Cells/immunology , Mast Cells/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction , Stem Cell Factor/metabolism , Anaphylaxis/immunology , Animals , Dimerization , Humans , Mast Cells/immunology , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Engineering , Proto-Oncogene Proteins c-kit/agonists , Proto-Oncogene Proteins c-kit/chemistry , Stem Cell Factor/chemistry , Stem Cell Factor/genetics
2.
Blood ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968138

ABSTRACT

While chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of B-cell malignancies, many patients relapse and therefore strategies to improve antitumor immunity are needed. We previously designed a novel autologous bispecific CAR targeting CD19 and CD22 (CAR19-22), which was well tolerated and associated with high response rates but relapse was common. Interleukin-15 (IL15) induces proliferation of diverse immune cells and can augment lymphocyte trafficking. Here, we report the results of a phase 1 clinical trial of the first combination of a novel recombinant polymer-conjugated IL15 receptor agonist (NKTR-255), with CAR19-22, in adults with relapsed / refractory B-cell acute lymphoblastic leukemia. Eleven patients were enrolled, nine of whom successfully received CAR19-22 followed by NKTR-255. There were no dose limiting toxicities, with transient fever and myelosuppression as the most common possibly related toxicities. We observed favorable efficacy with eight out of nine patients (89%) achieving measurable residual disease negative remission. At 12 months, progression-free survival for NKTR-255 was double that of historical controls (67% vs 38%). We performed correlative analyses to investigate the effects of IL15 receptor agonism. Cytokine profiling showed significant increases in IL15 and the chemokines CXCL9 and CXCL10. The increase in chemokines was associated with decreases in absolute lymphocyte counts and CD8+ CAR T-cells in blood and ten-fold increases in CSF CAR-T cells, suggesting lymphocyte trafficking to tissue. Combining NKTR-255 with CAR19-22 was safe, feasible and associated with high rates of durable responses (NCT03233854).

3.
Blood ; 141(22): 2727-2737, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36857637

ABSTRACT

The treatment landscape of relapsed/refractory (R/R) classic Hodgkin lymphoma (cHL) has evolved significantly over the past decade after the approval of brentuximab vedotin (BV) and the programmed death-1 (PD-1) inhibitors. We evaluated how outcomes and practice patterns have changed for patients with R/R cHL who underwent autologous hematopoietic cell transplantation (AHCT) at our institution from 2011 to 2020 (N = 183) compared with those from 2001 to 2010 (N = 159) and evaluated prognostic factors for progression-free survival (PFS) and overall survival (OS) in both eras. OS was superior in the modern era with a trend toward lower nonrelapse mortality beyond 2 years after transplant. Among patients who progressed after AHCT, 4-year postprogression survival increased from 43.3% to 71.4% in the modern era, reflecting increasing use of BV and the PD-1 inhibitors. In multivariable analysis for patients that underwent transplant in the modern era, age ≥45 years, primary refractory disease, and lack of complete remission pre-AHCT were associated with inferior PFS, whereas receipt of a PD-1 inhibitor-based regimen pre-AHCT was associated with superior PFS. Extranodal disease at relapse was associated with inferior OS. Our study demonstrates improved survival for R/R cHL after AHCT in the modern era attributed to more effective salvage regimens allowing for better disease control pre-AHCT and improved outcomes for patients who progressed after AHCT. Excellent outcomes were observed with PD-1 inhibitor-based salvage regimens pre-AHCT and support a randomized trial evaluating immunotherapy in the second line setting.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hodgkin Disease , Humans , Middle Aged , Hodgkin Disease/pathology , Transplantation, Autologous , Immune Checkpoint Inhibitors/therapeutic use , Neoplasm Recurrence, Local/therapy , Brentuximab Vedotin/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects
4.
Am J Hematol ; 99(8): 1485-1491, 2024 08.
Article in English | MEDLINE | ID: mdl-38661220

ABSTRACT

Autologous hematopoietic cell transplantation (AHCT) is often used as a consolidation for patients with peripheral T-cell lymphomas (PTCLs) due to the poor prognosis associated with this heterogenous group of disorders. However, a significant number of patients will experience post-AHCT disease relapse. Here, we report a retrospective study of consecutive 124 patients with PTCLs who underwent AHCT from 2008 to 2020. With a median follow-up of 6.01 years following AHCT, 49 patients (40%) experienced disease relapse. As expected, more patients who were not in first complete remission experienced post-AHCT relapse. Following relapse, majority of the patients (70%) receiving systemic therapies intended as bridging to curative allogeneic HCT. However, only 18 (53%) patients eventually underwent allogeneic HCT. The estimated 3-year OS among patients proceeding to allogeneic HCT was 72% (95% CI 46%-87%). Our report details the pattern of post-AHCT relapse and the management of relapsed disease using different therapeutic modalities.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, T-Cell, Peripheral , Humans , Middle Aged , Male , Female , Adult , Retrospective Studies , Aged , Lymphoma, T-Cell, Peripheral/therapy , Lymphoma, T-Cell, Peripheral/mortality , Recurrence , Transplantation, Autologous , Neoplasm Recurrence, Local/therapy , Young Adult
5.
Blood ; 133(19): 2069-2078, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30745302

ABSTRACT

The myelodysplastic syndromes (MDS) represent a group of clonal disorders that result in ineffective hematopoiesis and are associated with an increased risk of transformation into acute leukemia. MDS arises from hematopoietic stem cells (HSCs); therefore, successful elimination of MDS HSCs is an important part of any curative therapy. However, current treatment options, including allogeneic hematopoietic cell transplantation (HCT), often fail to ablate disease-initiating MDS HSCs, and thus have low curative potential and high relapse rates. Here, we demonstrate that human HSCs can be targeted and eliminated by monoclonal antibodies (mAbs) that bind cell-surface CD117 (c-Kit). We show that an anti-human CD117 mAb, SR-1, inhibits normal cord blood and bone marrow HSCs in vitro. Furthermore, SR-1 and clinical-grade humanized anti-human CD117 mAb, AMG 191, deplete normal and MDS HSCs in vivo in xenograft mouse models. Anti-CD117 mAbs also facilitate the engraftment of normal donor human HSCs in MDS xenograft mouse models, restoring normal human hematopoiesis and eradicating aggressive pathologic MDS cells. This study is the first to demonstrate that anti-human CD117 mAbs have potential as novel therapeutics to eradicate MDS HSCs and augment the curative effect of allogeneic HCT for this disease. Moreover, we establish the foundation for use of these antibody agents not only in the treatment of MDS but also for the multitude of other HSC-driven blood and immune disorders for which transplant can be disease-altering.


Subject(s)
Antibodies, Monoclonal/pharmacology , Hematopoietic Stem Cells/drug effects , Myelodysplastic Syndromes , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Animals , Heterografts , Humans , Mice , Mice, Inbred NOD
6.
Haematologica ; 106(6): 1599-1607, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32499241

ABSTRACT

We have used a non-myeloablative conditioning regimen for allogeneic hematopoietic cell transplantation for the past twenty years. During that period, changes in clinical practice have been aimed at reducing morbidity and mortality from infections, organ toxicity, and graft-versus-host disease. We hypothesized that improvements in clinical practice led to better transplantation outcomes over time. From 1997-2017, 1,720 patients with hematologic malignancies received low-dose total body irradiation +/- fludarabine or clofarabine before transplantation from HLA-matched sibling or unrelated donors, followed by mycophenolate mofetil and a calcineurin inhibitor ± sirolimus. We compared outcomes in three cohorts by year of transplantation: 1997 +/- 2003 (n=562), 2004 +/- 2009 (n=594), and 2010 +/- 2017 (n=564). The proportion of patients ≥60 years old increased from 27% in 1997 +/- 2003 to 56% in 2010-2017, and with scores from the Hematopoietic Cell Transplantation Comborbidity Index of ≥3 increased from 25% in 1997 +/- 2003 to 45% in 2010 +/- 2017. Use of unrelated donors increased from 34% in 1997 +/- 2003 to 65% in 2010-2017. When outcomes from 2004 +/- 2009 and 2010-2017 were compared to 1997 +/- 2003, improvements were noted in overall survival (P=.0001 for 2004-2009 and P <.0001 for 2010-2017), profression-free survival (P=.002 for 2004-2009 and P <.0001 for 2010 +/- 2017), non-relapse mortality (P<.0001 for 2004 +/- 2009 and P <.0001 for 2010 +/- 2017), and in rates of grades 2 +/- 4 acute and chronic graft-vs.-host disease. For patients with hematologic malignancies who underwent transplantation with non-myeloablative conditioning, outcomes have improved during the past two decades. Trials reported are registered under ClinicalTrials.gov identifiers: NCT00003145, NCT00003196, NCT00003954, NCT00005799, NCT00005801, NCT00005803, NCT00006251, NCT00014235, NCT00027820, NCT00031655, NCT00036738, NCT00045435, NCT00052546, NCT00060424, NCT00075478, NCT00078858, NCT00089011, NCT00104858, NCT00105001, NCT00110058, NCT00397813, NCT00793572, NCT01231412, NCT01252667, NCT01527045.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Hematologic Neoplasms/therapy , Humans , Middle Aged , Neoplasm Recurrence, Local , Transplantation Conditioning , Unrelated Donors
7.
Biol Blood Marrow Transplant ; 26(12): e328-e332, 2020 12.
Article in English | MEDLINE | ID: mdl-32961371

ABSTRACT

Plasma cell leukemia (PCL) is a rare and very aggressive plasma cell disorder. The optimal treatment approach, including whether to pursue an autologous (auto) or allogeneic (allo) stem cell transplantation (SCT) is not clear, given the lack of clinical trial-based evidence. This single-center retrospective study describes the outcomes of 16 patients with PCL (n = 14 with primary PCL) who underwent either autoSCT (n = 9) or alloSCT (n = 7) for PCL in the era of novel agents, between 2007 and 2019. The median age of the cohort was 58 years. High-risk cytogenetics were found in 50% of the patients. All patients received a proteasome inhibitor and/or immunomodulatory drug-based regimen before transplantation. At the time of transplantation, 10 patients (62%) obtained at least a very good partial response (VGPR). The response after autoSCT (3 months) was at least a VGPR in 6 patients (67%; complete response [CR] in 5). All patients undergoing alloSCT achieved a CR at 3 months. Maintenance therapy was provided to 5 patients (56%) after autoSCT. The median progression-free survival after transplantation was 6 months in the autoSCT group, compared with 18 months in the alloSCT group (P = .09), and median overall survival (OS) after transplantation in the 2 groups was 19 months and 40 months, respectively (P = .41). The median OS from diagnosis was 27 months and 49 months, respectively (P = .50). Of the 11 deaths, 10 patients (91%) died of relapsed disease. AlloSCT was not observed to offer any significant survival advantage over autoSCT in PCL, in agreement with recent reports, and relapse remains the primary cause of death in these patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Plasma Cell , Pharmaceutical Preparations , Disease-Free Survival , Humans , Leukemia, Plasma Cell/therapy , Middle Aged , Retrospective Studies , Stem Cell Transplantation , Transplantation, Autologous , Transplantation, Homologous , Treatment Outcome
8.
Biol Blood Marrow Transplant ; 25(12): 2338-2349, 2019 12.
Article in English | MEDLINE | ID: mdl-31415899

ABSTRACT

Graft-versus-host disease (GVHD) remains a major complication of allogeneic hematopoietic cell transplantation. Acute GVHD (aGVHD) results from direct damage by donor T cells, whereas the biology of chronic GVHD (cGVHD) with its autoimmune-like manifestations remains poorly understood, mainly because of the paucity of representative preclinical models. We examined over an extended time period 7 MHC-matched, minor antigen-mismatched mouse models for development of cGVHD. Development and manifestations of cGVHD were determined by a combination of MHC allele type and recipient strain, with BALB recipients being the most susceptible. The C57BL/6 into BALB.B combination most closely modeled the human syndrome. In this strain combination moderate aGVHD was observed and BALB.B survivors developed overt cGVHD at 6 to 12 months affecting eyes, skin, and liver. Naïve CD4+ cells caused this syndrome as no significant pathology was induced by grafts composed of purified hematopoietic stem cells (HSCs) or HSC plus effector memory CD4+ or CD8+ cells. Furthermore, co-transferred naïve and effector memory CD4+ T cells demonstrated differential homing patterns and locations of persistence. No clear association with donor Th17 cells and the phenotype of aGVHD or cGVHD was observed in this model. Donor CD4+ cells caused injury to medullary thymic epithelial cells, a key population responsible for negative T cell selection, suggesting that impaired thymic selection was an underlying cause of the cGVHD syndrome. In conclusion, we report for the first time that the C57BL/6 into BALB.B combination is a representative model of cGVHD that evolves from immunologic events during the early post-transplant period.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens/immunology , Th17 Cells/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Chronic Disease , Disease Models, Animal , Graft vs Host Disease/pathology , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Th17 Cells/pathology
9.
Haematologica ; 104(2): 380-391, 2019 02.
Article in English | MEDLINE | ID: mdl-30262560

ABSTRACT

We previously reported initial results in 102 multiple myeloma (MM) patients treated with sequential high-dose melphalan and autologous hematopoietic cell transplantation followed by 200 cGy total body irradiation with or without fludarabine 90 mg/m2 and allogeneic hematopoietic cell transplantation. Here we present long-term clinical outcomes among the 102 initial patients and among 142 additional patients, with a median follow up of 8.3 (range 1.0-18.1) years. Donors included human leukocyte antigen identical siblings (n=179) and HLA-matched unrelated donors (n=65). A total of 209 patients (86%) received tandem autologous-allogeneic upfront, while thirty-five patients (14%) had failed a previous autologous hematopoietic cell transplantation before the planned autologous-allogeneic transplantation. Thirty-one patients received maintenance treatment at a median of 86 days (range, 61-150) after allogeneic transplantation. Five-year rates of overall survival (OS) and progression-free survival (PFS) were 54% and 31%, respectively. Ten-year OS and PFS were 41% and 19%, respectively. Overall non-relapse mortality was 2% at 100 days and 14% at five years. Patients with induction-refractory disease and those with high-risk biological features experienced shorter OS and PFS. A total of 152 patients experienced disease relapse and 117 of those received salvage treatment. Eighty-three of the 117 patients achieved a clinical response, and for those, the median duration of survival after relapse was 7.8 years. Moreover, a subset of patients who became negative for minimal residual disease (MRD) by flow cytometry experienced a significantly lower relapse rate as compared with MRD-positive patients (P=0.03). Our study showed that the graft-versus-myeloma effect after non-myeloablative allografting allowed long-term disease control in standard and high-risk patient subsets. Ultra-high-risk patients did not appear to benefit from tandem autologous/allogeneic hematopoietic cell transplantation because of early disease relapse. Incorporation of newer anti-MM agents into the initial induction treatments before tandem hematopoietic cell transplantation and during maintenance might improve outcomes of ultra-high-risk patients. Clinical trials included in this study are registered at: clinicaltrials.gov identifiers: 00075478, 00005799, 01251575, 00078858, 00105001, 00027820, 00089011, 00003196, 00006251, 00793572, 00054353, 00014235, 00003954.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma/therapy , Adult , Aged , Biomarkers , Chromosome Aberrations , Combined Modality Therapy , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Testing , Humans , Male , Middle Aged , Multiple Myeloma/diagnosis , Multiple Myeloma/etiology , Multiple Myeloma/mortality , Neoplasm Staging , Prognosis , Survival Analysis , Transplantation Chimera , Transplantation Conditioning/methods , Transplantation, Autologous , Transplantation, Homologous , Treatment Outcome
10.
J Immunol ; 197(10): 4151-4162, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27815446

ABSTRACT

T cells are widely used to promote engraftment of hematopoietic stem cells (HSCs) during an allogeneic hematopoietic cell transplantation. Their role in overcoming barriers to HSC engraftment is thought to be particularly critical when patients receive reduced doses of preparative chemotherapy and/or radiation compared with standard transplantations. In this study, we sought to delineate the effects CD4+ cells on engraftment and blood formation in a model that simulates clinical hematopoietic cell transplantation by transplanting MHC-matched, minor histocompatibility-mismatched grafts composed of purified HSCs, HSCs plus bulk T cells, or HSCs plus T cell subsets into mice conditioned with low-dose irradiation. Grafts containing conventional CD4+ T cells caused marrow inflammation and inhibited HSC engraftment and blood formation. Posttransplantation, the marrows of HSCs plus CD4+ cell recipients contained IL-12-secreting CD11c+ cells and IFN-γ-expressing donor Th1 cells. In this setting, host HSCs arrested at the short-term stem cell stage and remained in the marrow in a quiescent cell cycling state (G0). As a consequence, donor HSCs failed to engraft and hematopoiesis was suppressed. Our data show that Th1 cells included in a hematopoietic allograft can negatively impact HSC activity, blood reconstitution, and engraftment of donor HSCs. This potential negative effect of donor T cells is not considered in clinical transplantation in which bulk T cells are transplanted. Our findings shed new light on the effects of CD4+ T cells on HSC biology and are applicable to other pathogenic states in which immune activation in the bone marrow occurs such as aplastic anemia and certain infectious conditions.


Subject(s)
Hematopoietic Stem Cells/immunology , Peripheral Blood Stem Cells/physiology , Th1 Cells/immunology , Transplantation Conditioning , Animals , Bone Marrow Transplantation , CD4-Positive T-Lymphocytes/immunology , Cell Cycle , Graft Survival , Hematopoiesis , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/physiology , Interferon-gamma/immunology , Interleukin-12/metabolism , Mice , Mice, Inbred C57BL , Peripheral Blood Stem Cells/immunology , Tissue Donors , Transplantation Chimera
11.
Biol Blood Marrow Transplant ; 23(10): 1744-1748, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28668491

ABSTRACT

The Hematopoietic Cell Transplantation (HCT)-Specific Comorbidity Index (HCT-CI) has been extensively studied in myeloablative and reduced-intensity conditioning regimens, with less data available regarding the validity of HCT-CI in nonmyeloablative (NMA) allogeneic transplantation. We conducted a retrospective analysis to evaluate the association between HCT-CI and nonrelapse mortality (NRM) and all-cause mortality (ACM) in patients receiving the total lymphoid irradiation and antithymocyte globulin (TLI/ATG) NMA transplantation preparative regimen. We abstracted demographic and clinical data from consecutive patients, who received allogeneic HCT with the TLI/ATG regimen between January 2008 and September 2014, from the Stanford blood and marrow transplantation database. We conducted univariable and multivariable Cox proportional hazards regression models to evaluate the association between HCT-CI and NRM and ACM. In all, 287 patients were included for analysis. The median age of the patients was 61 (range, 22 to 77) years. The median overall survival was 844 (range, 374 to 1484) days. Most patients had Karnofsky performance score of 90 or above (85%). Fifty-two (18%) patients relapsed within 3 months and 108 (38%) patients relapsed within 1 year, with a median time to relapse of 163 (range, 83 to 366) days. Among the comorbidities in the HCT-CI identified at the time of HCT, reduced pulmonary function was the most common (n = 89), followed by prior history of malignancy (n = 39), psychiatric condition (n = 38), and diabetes (n = 31). Patients with higher HCT-CI scores had higher mortality risks for ACM (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.22 to 3.14 for HCT-CI score 1 or 2 and HR, 1.85; 95% CI, 1.11 to 3.08 for HCT-CI score ≥ 3, compared with 0, respectively). Among individual HCT-CI variables, diabetes (HR, 2.31; 95% CI, 1.79 to 2.89; P = .003) and prior solid tumors (HR, 1.75; 95% CI, 1.02 to 3.00; P = .043) were associated with a higher risk of ACM. Higher HCT-CI scores were significantly associated with higher risk of death. HCT-CI is a valid tool for predicting ACM in NMA TLI/ATG allogeneic HCT.


Subject(s)
Comorbidity , Hematopoietic Stem Cell Transplantation/methods , Transplantation Conditioning/methods , Adult , Aged , Hematopoietic Stem Cell Transplantation/mortality , Humans , Middle Aged , Prognosis , Regression Analysis , Retrospective Studies , Risk Assessment , Survival Rate , Transplantation, Homologous , Young Adult
12.
Blood ; 123(18): 2882-92, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24591203

ABSTRACT

Total lymphoid irradiation (TLI) with antithymocyte globulin (ATG) is a unique regimen that prepares recipients for allogeneic hematopoietic cell transplantation by targeting lymph nodes, while sparing large areas of the bone marrow. TLI is reported to increase the frequency of CD4(+)CD25(+)FoxP3(+) T-regulatory cells (Treg) relative to conventional T cells. In this study, barriers to hematopoietic stem cell (HSC) engraftment following this nonmyeloablative conditioning were evaluated. TLI/ATG resulted in profound lymphoablation but endogenous host HSC remained. Initial donor HSC engraftment occurred only in radiation exposed marrow sites, but gradually distributed to bone marrow outside the radiation field. Sustained donor engraftment required host lymphoid cells insofar as lymphocyte deficient Rag2γc(-/-) recipients had unstable engraftment compared with wild-type. TLI/ATG treated wild-type recipients had increased proportions of Treg that were associated with increased HSC frequency and proliferation. In contrast, Rag2γc(-/-) recipients who lacked Treg did not. Adoptive transfer of Treg into Rag2γc(-/-) recipients resulted in increased cell cycling of endogenous HSC. Thus, we hypothesize that Treg influence donor engraftment post-TLI/ATG by increasing HSC cell cycling, thereby promoting the exit of host HSC from the marrow niche. Our study highlights the unique dynamics of donor hematopoiesis following TLI/ATG, and the effect of Treg on HSC activity.


Subject(s)
Graft Survival/immunology , Hematopoiesis/immunology , T-Lymphocytes, Regulatory/immunology , Transplantation Conditioning/methods , Animals , Bone Marrow/immunology , Bone Marrow/metabolism , Bone Marrow/radiation effects , Graft Survival/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/radiation effects , Mice , Mice, Knockout , T-Lymphocytes, Regulatory/metabolism , Tissue Donors , Transplantation Chimera , Transplantation, Homologous
14.
Proc Natl Acad Sci U S A ; 109(15): 5820-5, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22440752

ABSTRACT

Impaired immunity is a fundamental obstacle to successful allogeneic hematopoietic cell transplantation. Mature graft T cells are thought to provide protection from infections early after transplantation, but can cause life-threatening graft-vs.-host disease. Human CMV is a major pathogen after transplantation. We studied reactivity against the mouse homologue, murine CMV (MCMV), in lethally irradiated mice given allogeneic purified hematopoietic stem cells (HSCs) or HSCs supplemented with T cells or T-cell subsets. Unexpectedly, recipients of purified HSCs mounted superior antiviral responses compared with recipients of HSC plus unselected bulk T cells. Furthermore, supplementation of purified HSC grafts with CD8(+) memory or MCMV-specific T cells resulted in enhanced antiviral reactivity. Posttransplantation lymphopenia promoted massive expansion of MCMV-specific T cells when no competing donor T cells were present. In recipients of pure HSCs, naive and memory T cells and innate lymphoid cell populations developed. In contrast, the lymphoid pool in recipients of bulk T cells was dominated by effector memory cells. These studies show that pure HSC transplantations allow superior protective immunity against a viral pathogen compared with unselected mature T cells. This reductionist transplant model reveals the impact of graft composition on regeneration of host, newly generated, and mature transferred T cells, and underscores the deleterious effects of bulk donor T cells. Our findings lead us to conclude that grafts composed of purified HSCs provide an optimal platform for in vivo expansion of selected antigen-specific cells while allowing the reconstitution of a naive T-cell pool.


Subject(s)
Epitopes/immunology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Immunity/immunology , T-Lymphocytes/transplantation , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Hematopoietic Stem Cells/metabolism , Herpesviridae Infections/immunology , Humans , Immunization , Lymphocyte Subsets/immunology , Lymphopenia/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus , T-Lymphocytes/cytology , Virus Activation/immunology
15.
Biol Blood Marrow Transplant ; 20(6): 837-43, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24607552

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo HCT) is the only curative therapy for the myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN), but treatment toxicity has been a barrier to its more widespread use. The nonmyeloablative regimen of total lymphoid irradiation (TLI) and antithymocyte globulin (ATG) permits the establishment of donor hematopoiesis necessary for the graft-versus-malignancy effect and is protective against acute graft-versus-host disease (aGVHD), but it has minimal direct cytotoxicity against myeloid diseases. We explored the use of TLI-ATG conditioning to treat 61 patients with allo HCT for MDS (n = 32), therapy-related myeloid neoplasms (n = 15), MPN (n = 9), and chronic myelomonocytic leukemia (n = 5). The median age of all patients was 63 years (range, 50 to 73). The cumulative incidence of aGVHD grades II to IV was 14% (95% confidence interval [CI], 4% to 23%) and for grades III to IV, 4% (95% CI, 0 to 9%), and it did not differ between patients who received allografts from related or unrelated donors. The cumulative incidence of nonrelapse mortality (NRM) at 100 days, 12 months, and 36 months was 0%, 7%, and 11%. Overall survival and progression-free survival were 41% (95% CI, 29% to 53%) and 35% (95% CI, 23% to 48%), respectively. The safety and tolerability of TLI-ATG, as exemplified by its low NRM, provides a foundation for further risk-adapted or prophylactic interventions to prevent disease progression.


Subject(s)
Antilymphocyte Serum/administration & dosage , Hematopoietic Stem Cell Transplantation/methods , Lymphatic Irradiation/methods , Myelodysplastic Syndromes/therapy , Myeloproliferative Disorders/therapy , Transplantation Conditioning/methods , Aged , Analysis of Variance , Female , Humans , Kaplan-Meier Estimate , Lymphatic Irradiation/adverse effects , Male , Middle Aged , Transplantation Chimera , Transplantation, Homologous
16.
Blood ; 119(25): 6145-54, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22563089

ABSTRACT

B cells are involved in the pathogenesis of chronic GVHD (cGVHD). We hypothesized that prophylactic anti-B-cell therapy delivered 2 months after transplantation would decrease allogeneic donor B-cell immunity and possibly the incidence of cGVHD. Therefore, in the present study, patients with high-risk chronic lymphocytic leukemia (n = 22) and mantle-cell lymphoma (n = 13) received a total lymphoid irradiation of 80 cGy for 10 days and antithymocyte globulin 1.5 mg/kg/d for 5 days. Rituximab (375 mg/m(2)) was infused weekly on days 56, 63, 70, and 77 after transplantation. The incidence of acute GVHD was 6%. The cumulative incidence of cGVHD was 20%. Nonrelapse mortality was 3%. Rituximab treatment after allogeneic transplantation significantly reduced B-cell allogeneic immunity, with complete prevention of alloreactive H-Y Ab development in male patients with female donors (P = .01). Overall survival and freedom from progression at 4 years for chronic lymphocytic leukemia patients were 73% and 47%, respectively; for mantle-cell lymphoma patients, they were 69% and 53%, respectively.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/administration & dosage , B-Lymphocytes/immunology , Graft vs Host Disease/prevention & control , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Adult , Aged , Antibodies, Monoclonal, Murine-Derived/pharmacology , Autoimmunity/drug effects , B-Lymphocytes/drug effects , Chemoprevention/methods , Chronic Disease , Drug Administration Schedule , Feasibility Studies , Female , Graft vs Host Disease/epidemiology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacology , Incidence , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Male , Middle Aged , Pilot Projects , Rituximab , Transplantation Conditioning/methods , Transplantation, Homologous/adverse effects , Young Adult
17.
Arthritis Rheum ; 65(3): 681-92, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23233229

ABSTRACT

OBJECTIVE: In the K/BxN mouse model of inflammatory arthritis, T cells carrying a transgenic T cell receptor initiate disease by helping B cells to produce arthritogenic anti-glucose-6-phosphate isomerase (anti-GPI) autoantibodies. We found that lethally- irradiated lymphocyte-deficient C57BL/6 (B6).g7 (I-A(g7) +) recombinase-activating gene-deficient (Rag(-/-)) mice reconstituted with K/BxN hematopoietic stem and progenitor cells exhibit arthritis by week 4. In contrast, healthy B6.g7 recipients of K/BxN hematopoietic stem and progenitor cells show only mild arthritis, with limited extent and duration. The objective of this study was to investigate the factors responsible for the attenuation of arthritis in B6.g7 recipients. METHODS: Antibody responses were measured by enzyme-linked immunosorbent assay. Fluorescence-activated cell sorting analyses were performed for testing chimerism, expression of markers of activation and suppression, tetramer binding, and intracellular cytokines in CD4+ T cells. Suppressive activity of CD4+ T cells was studied by adoptive transfer. RESULTS: Titers of anti-GPI antibodies in reconstituted B6.g7 mice were ∼60-fold lower than in reconstituted B6.g7 Rag(-/-) mice. Examination of chimerism in the reconstituted B6.g7 mice showed that B cells and myeloid cells in these mice were donor derived, but CD4+ T cells were primarily host derived and enriched for cells expressing the conventional regulatory markers CD25 and FoxP3. Notably, CD4+CD25-FoxP3- T cells expressed markers of suppressive function (CD73 and folate receptor 4), and delayed disease after adoptive transfer. Activation of donor-derived CD4+ T cells was reduced, and thymic deletion of these cells appeared increased. CONCLUSION: Despite myeloablation, host CD4+ T cells having a regulatory phenotype emerge in these mice and attenuate autoimmunity.


Subject(s)
Arthritis/immunology , Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/immunology , 5'-Nucleotidase/metabolism , Adoptive Transfer , Animals , Arthritis/etiology , Arthritis/pathology , Autoimmune Diseases/etiology , Autoimmune Diseases/pathology , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/immunology , Hematopoietic Stem Cells/pathology , Homeodomain Proteins/genetics , Immunologic Memory/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Receptors, Cell Surface/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Thymus Gland/cytology , Thymus Gland/immunology , Whole-Body Irradiation
18.
Blood Adv ; 8(5): 1105-1115, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38091578

ABSTRACT

ABSTRACT: Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for hematological malignancies for which graft-versus-host disease (GVHD) remains a major complication. The use of donor T-regulatory cells (Tregs) to prevent GVHD appears promising, including in our previous evaluation of an engineered graft product (T-reg graft) consisting of the timed, sequential infusion of CD34+ hematopoietic stem cells and high-purity Tregs followed by conventional T cells. However, whether immunosuppressive prophylaxis can be removed from this protocol remains unclear. We report the results of the first stage of an open-label single-center phase 2 study (NCT01660607) investigating T-reg graft in myeloablative HCT of HLA-matched and 9/10-matched recipients. Twenty-four patients were randomized to receive T-reg graft alone (n = 12) or T-reg graft plus single-agent GVHD prophylaxis (n = 12) to determine whether T-reg graft alone was noninferior in preventing acute GVHD. All patients developed full-donor myeloid chimerism. Patients with T-reg graft alone vs with prophylaxis had incidences of grade 3 to 4 acute GVHD of 58% vs 8% (P = .005) and grade 3 to 4 of 17% vs 0% (P = .149), respectively. The incidence of moderate-to-severe chronic GVHD was 28% in the T-reg graft alone arm vs 0% with prophylaxis (P = .056). Among patients with T-reg graft and prophylaxis, CD4+ T-cell-to-Treg ratios were reduced after transplantation, gene expression profiles showed reduced CD4+ proliferation, and the achievement of full-donor T-cell chimerism was delayed. This study indicates that T-reg graft with single-agent tacrolimus is preferred over T-reg graft alone for the prevention of acute GVHD. This trial was registered at www.clinicaltrials.gov as #NCT01660607.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Tacrolimus/therapeutic use , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/pathology , Immunosuppressive Agents/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Tissue Donors
19.
J Immunother Cancer ; 12(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955420

ABSTRACT

BACKGROUND: Fludarabine in combination with cyclophosphamide (FC) is the standard lymphodepletion regimen for CAR T-cell therapy (CAR T). A national fludarabine shortage in 2022 necessitated the exploration of alternative regimens with many centers employing single-agent bendamustine as lymphodepletion despite a lack of clinical safety and efficacy data. To fill this gap in the literature, we evaluated the safety, efficacy, and expansion kinetics of bendamustine as lymphodepletion prior to axicabtagene ciloleucel (axi-cel) therapy. METHODS: 84 consecutive patients with relapsed or refractory large B-cell lymphoma treated with axi-cel and managed with a uniform toxicity management plan at Stanford University were studied. 27 patients received alternative lymphodepletion with bendamustine while 57 received FC. RESULTS: Best complete response rates were similar (73.7% for FC and 74% for bendamustine, p=0.28) and there was no significant difference in 12-month progression-free survival or overall survival estimates (p=0.17 and p=0.62, respectively). The frequency of high-grade cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome was similar in both the cohorts. Bendamustine cohort experienced lower proportions of hematological toxicities and antibiotic use for neutropenic fever. Immune reconstitution, as measured by quantitative assessment of cellular immunity, was better in bendamustine cohort as compared with FC cohort. CAR T expansion as measured by peak expansion and area under the curve for expansion was comparable between cohorts. CONCLUSIONS: Bendamustine is a safe and effective alternative lymphodepletion conditioning for axi-cel with lower early hematological toxicity and favorable immune reconstitution.


Subject(s)
Bendamustine Hydrochloride , Biological Products , Lymphoma, Large B-Cell, Diffuse , Humans , Bendamustine Hydrochloride/therapeutic use , Bendamustine Hydrochloride/administration & dosage , Male , Female , Middle Aged , Aged , Lymphoma, Large B-Cell, Diffuse/drug therapy , Biological Products/therapeutic use , Biological Products/adverse effects , Adult , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Antigens, CD19/immunology , Antigens, CD19/therapeutic use
20.
Blood Adv ; 8(12): 3314-3326, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38498731

ABSTRACT

ABSTRACT: Chimeric antigen receptor (CAR) T cells directed against CD19 (CAR19) are a revolutionary treatment for B-cell lymphomas (BCLs). CAR19 cell expansion is necessary for CAR19 function but is also associated with toxicity. To define the impact of CAR19 expansion on patient outcomes, we prospectively followed a cohort of 236 patients treated with CAR19 (brexucabtagene autoleucel or axicabtagene ciloleucel) for mantle cell lymphoma (MCL), follicular lymphoma, and large BCL (LBCL) over the course of 5 years and obtained CAR19 expansion data using peripheral blood immunophenotyping for 188 of these patients. CAR19 expansion was higher in patients with MCL than other lymphoma histologic subtypes. Notably, patients with MCL had increased toxicity and required fourfold higher cumulative steroid doses than patients with LBCL. CAR19 expansion was associated with the development of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and the requirement for granulocyte colony-stimulating factor 14 days after infusion. Younger patients and those with elevated lactate dehydrogenase (LDH) had significantly higher CAR19 expansion. In general, no association between CAR19 expansion and LBCL treatment response was observed. However, when controlling for tumor burden, we found that lower CAR19 expansion in conjunction with low LDH was associated with improved outcomes in LBCL. In sum, this study finds CAR19 expansion principally associates with CAR-related toxicity. Additionally, CAR19 expansion as measured by peripheral blood immunophenotyping may be dispensable to favorable outcomes in LBCL.


Subject(s)
Antigens, CD19 , Immunophenotyping , Immunotherapy, Adoptive , Humans , Male , Antigens, CD19/immunology , Middle Aged , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Female , Aged , Receptors, Chimeric Antigen/immunology , Adult , Lymphoma, Mantle-Cell/immunology , Lymphoma, Mantle-Cell/blood , Aged, 80 and over , Biological Products
SELECTION OF CITATIONS
SEARCH DETAIL