Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Glia ; 70(7): 1215-1250, 2022 07.
Article in English | MEDLINE | ID: mdl-35107839

ABSTRACT

In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear. Recent studies using cuprizone (CPZ) as an animal model of central nervous system demyelination revealed that the up-regulation of signaling proteins in microglia facilitates effective phagocytosis of myelin debris. Moreover, during demyelination, protective mediators are released from activated microglia, resulting in the acceleration of remyelination in the CPZ model. In contrast, inadequate microglial activation or recruitment to the site of demyelination, and the production of toxic mediators, impairs remyelination resulting in progressive demyelination. In addition to the microglia-mediated phagocytosis, astrocytes play an important role in the phagocytic process by recruiting microglia to the site of demyelination and producing regenerative mediators. The current review is an update of these emerging findings from the CPZ animal model, discussing the roles of microglia and astrocytes in phagocytosis and myelination.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Animals , Astrocytes/metabolism , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Microglia/metabolism , Multiple Sclerosis/chemically induced , Multiple Sclerosis/metabolism , Myelin Sheath/metabolism , Phagocytosis
2.
Int J Mol Sci ; 22(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34298997

ABSTRACT

Multiple Sclerosis (MS) is a demyelinating disease of the human central nervous system having an unconfirmed pathoetiology. Although animal models are used to mimic the pathology and clinical symptoms, no single model successfully replicates the full complexity of MS from its initial clinical identification through disease progression. Most importantly, a lack of preclinical biomarkers is hampering the earliest possible diagnosis and treatment. Notably, the development of rationally targeted therapeutics enabling pre-emptive treatment to halt the disease is also delayed without such biomarkers. Using literature mining and bioinformatic analyses, this review assessed the available proteomic studies of MS patients and animal models to discern (1) whether the models effectively mimic MS; and (2) whether reasonable biomarker candidates have been identified. The implication and necessity of assessing proteoforms and the critical importance of this to identifying rational biomarkers are discussed. Moreover, the challenges of using different proteomic analytical approaches and biological samples are also addressed.


Subject(s)
Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Proteome/metabolism , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Computational Biology , Female , Humans , Male , Mass Spectrometry , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , Protein Processing, Post-Translational , Proteomics
3.
Brain Behav Immun ; 87: 508-523, 2020 07.
Article in English | MEDLINE | ID: mdl-32014578

ABSTRACT

Feeding cuprizone (CPZ) to mice causes demyelination and reactive gliosis in the central nervous system (CNS), hallmarks of some neurodegenerative diseases like multiple sclerosis. However, relatively little is known regarding the behavioural deficits associated with CPZ-feeding and much of what is known is contradictory. This study investigated whether 37 days oral feeding of 0.2% CPZ to young adult mice evoked sensorimotor behavioural changes. Behavioural tests included measurements of nociceptive withdrawal reflex responses and locomotor tests. Additionally, these were compared to histological analysis of the relevant CNS regions by analysis of neuronal and glial cell components. CPZ-fed mice exhibited more foot slips in walking ladder and beam tests compared to controls. In contrast, no changes in nociceptive thresholds to thermal or mechanical stimuli occurred between groups. Histological analysis showed demyelination throughout the CNS, which was most prominent in white matter tracts in the cerebrum but was also elevated in areas such as the hippocampus, basal ganglia and diencephalon. Profound demyelination and gliosis was seen in the deep cerebellar nuclei and brain stem regions associated with the vestibular system. However, in the spinal cord changes were minimal. No loss of oligodendrocytes, neurons or motoneurons occurred but a significant increase in astrocyte staining ensued throughout the white matter of the spinal cord. The results suggest that CPZ differentially affects oligodendrocytes throughout the CNS and induces subtle motor changes such as ataxia. This is associated with deficits in CNS regions associated with motor and balance functions such as the cerebellum and brain stem.


Subject(s)
Cuprizone , Demyelinating Diseases , Animals , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Disease Models, Animal , Mice , Mice, Inbred C57BL , Oligodendroglia
4.
BMC Neurosci ; 16: 93, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26674138

ABSTRACT

BACKGROUND: Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. RESULTS: In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. CONCLUSION: These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents.


Subject(s)
Ganglia, Spinal/metabolism , Muscle, Skeletal/innervation , Neurons, Afferent/metabolism , Parvalbumins/metabolism , Peripheral Nerve Injuries/metabolism , Sciatic Nerve/injuries , Activating Transcription Factor 3/metabolism , Animals , Lumbar Vertebrae , Rats , Rats, Wistar
5.
Somatosens Mot Res ; 32(3): 158-62, 2015.
Article in English | MEDLINE | ID: mdl-25901469

ABSTRACT

This paper has investigated the hypothesis that spinal root avulsion (SRA) injury produces alterations in blood flow that contribute to avulsion injury induced pain-like behaviour in rodents. Photoplethysmography (PPG) is an established way of assessing blood flow in the central nervous system (CNS) and laser Doppler flowmetry (LDF) is the most widely used technique for measuring tissue perfusion. Using an established model of SRA injury that produces mechanical hypersensitivity, the PPG and LDF signals were recorded in animals 2 weeks post-injury and compared to naive recordings. PPG and LDF measurements were assessed on the ipsilateral and contralateral sides of the spinal cord rostral and caudal to the avulsion injury and at the level of the injury. Two weeks after injury, a time when vascular blood vessel endothelial markers are known to be decreased, no significant changes were seen in the spinal cord blood flow (SCBF) above, at, or below the injury site or when comparing the ipsilateral vs. contralateral side. Assessment of oxygenation levels again revealed no significant differences between naive and spinal root injured animals along the rostrocaudal axis (i.e., above, at, and below the site of injury or its equivalent on the contralateral side). From these experiments it is concluded that SRA does not significantly alter blood flow or tissue oxygen levels and so ischemia may play a less prominent role in avulsion injury induced pain.


Subject(s)
Radiculopathy/pathology , Spinal Cord/blood supply , Spinal Cord/pathology , Spinal Nerve Roots/injuries , Analysis of Variance , Animals , Disease Models, Animal , Functional Laterality , Laser-Doppler Flowmetry , Male , Photoplethysmography , Rats , Rats, Wistar , Rec A Recombinases/metabolism , Time Factors
6.
Somatosens Mot Res ; 32(1): 8-20, 2015.
Article in English | MEDLINE | ID: mdl-25019347

ABSTRACT

Single whiskers are topographically represented in the trigeminal (V) nucleus principalis (PrV) by a set of cylindrical aggregates of primary afferent terminals and somata (barrelettes). This isomorphic pattern is transmitted to the thalamus and barrel cortex. However, it is not known if terminals in PrV from neighboring whiskers interdigitate so as to violate rules of spatial parcellation predicted by barrelette borders; nor is it known the extent to which higher order inputs are topographic. The existence of inter-whisker arbor overlap or diffuse higher order inputs would demand additional theoretical principles to account for single whisker dominance in PrV cell responses. In adult rats, first, primary afferent pairs responding to the same or neighboring whiskers and injected with Neurobiotin or horseradish peroxidase were rendered brown or black to color-code their terminal boutons. When collaterals from both fibers appeared in the same topographic plane through PrV, the percentage of the summed area of the two arbor envelopes that overlapped was computed. For same-whisker pairs, overlap was 5 ± 6% (mean ± SD). For within-row neighbors, overlap was 2 ± 5%. For between-row neighbors, overlap was 1 ± 4%. Second, the areas of whisker primary afferent arbors and their corresponding barrelettes in the PrV were compared. In the transverse plane, arbor envelopes significantly exceeded the areas of cytochrome oxidase-stained barrelettes; arbors often extended into neighboring barrelettes. Third, bulk tracing of the projections from the spinal V subnucleus interpolaris (SpVi) to the PrV revealed strict topography such that they connect same-whisker barrelettes in the SpVi and PrV. Thus, whisker primary afferents do not exclusively project to their corresponding PrV barrelette, whereas higher order SpVi inputs to the PrV are precisely topographic.


Subject(s)
Nerve Net/physiology , Trigeminal Nuclei/physiology , Vibrissae/anatomy & histology , Vibrissae/innervation , Afferent Pathways/physiology , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Biotin/toxicity , Brain Mapping , Dextrans/metabolism , Female , Horseradish Peroxidase/toxicity , Male , Rats , Rats, Sprague-Dawley , Reaction Time/physiology , Vibrissae/injuries
7.
J Mol Neurosci ; 72(6): 1374-1401, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35644788

ABSTRACT

A change in visual perception is a frequent early symptom of multiple sclerosis (MS), the pathoaetiology of which remains unclear. Following a slow demyelination process caused by 12 weeks of low-dose (0.1%) cuprizone (CPZ) consumption, histology and proteomics were used to investigate components of the visual pathway in young adult mice. Histological investigation did not identify demyelination or gliosis in the optic tracts, pretectal nuclei, superior colliculi, lateral geniculate nuclei or visual cortices. However, top-down proteomic assessment of the optic nerve/tract revealed a significant change in the abundance of 34 spots in high-resolution two-dimensional (2D) gels. Subsequent liquid chromatography-tandem mass spectrometry (LC-TMS) analysis identified alterations in 75 proteoforms. Literature mining revealed the relevance of these proteoforms in terms of proteins previously implicated in animal models, eye diseases and human MS. Importantly, 24 proteoforms were not previously described in any animal models of MS, eye diseases or MS itself. Bioinformatic analysis indicated involvement of these proteoforms in cytoskeleton organization, metabolic dysregulation, protein aggregation and axonal support. Collectively, these results indicate that continuous CPZ-feeding, which evokes a slow demyelination, results in proteomic changes that precede any clear histological changes in the visual pathway and that these proteoforms may be potential early markers of degenerative demyelinating conditions.


Subject(s)
Cuprizone , Multiple Sclerosis , Animals , Cuprizone/toxicity , Disease Models, Animal , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Proteins , Proteomics/methods , Visual Pathways/chemistry , Visual Pathways/metabolism
8.
Front Physiol ; 12: 696039, 2021.
Article in English | MEDLINE | ID: mdl-34290621

ABSTRACT

Minocycline, a tetracycline-class of antibiotic, has been tested with mixed effectiveness on neuromuscular disorders such as amyotrophic lateral sclerosis, autoimmune neuritis and muscular dystrophy. The independent effect of minocycline on skeletal muscle force production and signalling remain poorly understood. Our aim here is to investigate the effects of minocycline on muscle mass, force production, myosin heavy chain abundance and protein synthesis. Mice were injected with minocycline (40 mg/kg i.p.) daily for 5 days and sacrificed at day six. Fast-twitch EDL, TA muscles and slow-twitch soleus muscles were dissected out, the TA muscle was snap-frozen and the remaining muscles were attached to force transducer whilst maintained in an organ bath. In C2C12 myotubes, minocycline was applied to the media at a final concentration of 10 µg/mL for 48 h. In minocycline treated mice absolute maximal force was lower in fast-twitch EDL while in slow-twitch soleus there was an increase in the time to peak and relaxation of the twitch. There was no effect of minocycline treatment on the other contractile parameters measured in isolated fast- and slow-twitch muscles. In C2C12 cultured cells, minocycline treatment significantly reduced both myosin heavy chain content and protein synthesis without visible changes to myotube morphology. In the TA muscle there was no significant changes in myosin heavy chain content. These results indicate that high dose minocycline treatment can cause a reduction in maximal isometric force production and mass in fast-twitch EDL and impair protein synthesis during myogenesis in C2C12 cultured cells. These findings have important implications for future studies investigating the efficacy of minocycline treatment in neuromuscular or other muscle-atrophy inducing conditions.

9.
Front Immunol ; 11: 572186, 2020.
Article in English | MEDLINE | ID: mdl-33117365

ABSTRACT

Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.


Subject(s)
Central Nervous System/physiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Oligodendroglia/immunology , Animals , Autoimmunity , Cuprizone , Demyelinating Diseases , Disease Models, Animal , Disease Progression , Humans , Mice
10.
Front Cell Neurosci ; 14: 43, 2020.
Article in English | MEDLINE | ID: mdl-32210765

ABSTRACT

Cuprizone (CPZ)-feeding in mice induces atrophy of peripheral immune organs (thymus and spleen) and suppresses T-cell levels, thereby limiting its use as a model for studying the effects of the immune system in demyelinating diseases such as Multiple Sclerosis (MS). To investigate whether castration (Cx) can protect the peripheral immune organs from CPZ-induced atrophy and enable T-cell recruitment into the central nervous system (CNS) following a breach of the blood-brain barrier (BBB), three related studies were carried out. In Study 1, Cx prevented the dose-dependent reductions (0.1% < 0.2% CPZ) in thymic and splenic weight, size of the thymic medulla and splenic white pulp, and CD4 and CD8 (CD4/8) levels remained comparable to gonadally intact (Gi) control males. Importantly, 0.1% and 0.2% CPZ were equipotent at inducing central demyelination and glial activation. In Study 2, combining Cx with 0.1% CPZ-feeding and BBB disruption with pertussis toxin (PT) enhanced CD8+ T-cell recruitment into the CNS. The increased CD8+ T-cell level observed in the parenchyma of the cerebrum, cerebellum, brainstem and spinal cord were confirmed by flow cytometry and western blot analyses of CNS tissue. In Study 3, PT+0.1% CPZ-feeding to Gi female mice resulted in similar effects on the peripheral immune organs, CNS demyelination, and gliosis comparable to Gi males, indicating that testosterone levels alone were not responsible for the immune response seen in Study 2. The combination of Cx+0.1% CPZ-feeding+PT indicates that CPZ-induced demyelination can trigger an "inside-out" immune response when the peripheral immune system is spared and may provide a better model to study the initiating events in demyelinating conditions such as MS.

11.
Anat Sci Educ ; 13(3): 284-300, 2020 May.
Article in English | MEDLINE | ID: mdl-32306555

ABSTRACT

Australian and New Zealand universities commenced a new academic year in February/March 2020 largely with "business as usual." The subsequent Covid-19 pandemic imposed unexpected disruptions to anatomical educational practice. Rapid change occurred due to government-imposed physical distancing regulations from March 2020 that increasingly restricted anatomy laboratory teaching practices. Anatomy educators in both these countries were mobilized to adjust their teaching approaches. This study on anatomy education disruption at pandemic onset within Australia and New Zealand adopts a social constructivist lens. The research question was "What are the perceived disruptions and changes made to anatomy education in Australia and New Zealand during the initial period of the Covid-19 pandemic, as reflected on by anatomy educators?." Thematic analysis to elucidate "the what and why" of anatomy education was applied to these reflections. About 18 anatomy academics from ten institutions participated in this exercise. The analysis revealed loss of integrated "hands-on" experiences, and impacts on workload, traditional roles, students, pedagogy, and anatomists' personal educational philosophies. The key opportunities recognized for anatomy education included: enabling synchronous teaching across remote sites, expanding offerings into the remote learning space, and embracing new pedagogies. In managing anatomy education's transition in response to the pandemic, six critical elements were identified: community care, clear communications, clarified expectations, constructive alignment, community of practice, ability to compromise, and adapt and continuity planning. There is no doubt that anatomy education has stepped into a yet unknown future in the island countries of Australia and New Zealand.


Subject(s)
Anatomy/education , Communicable Disease Control , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Australia/epidemiology , COVID-19 , Curriculum , Education, Distance , Humans , New Zealand/epidemiology , Pandemics , Schools, Medical , Teaching
12.
J Oncol ; 2019: 4828563, 2019.
Article in English | MEDLINE | ID: mdl-31467537

ABSTRACT

Oxaliplatin-induced neuropathic pain limits treatment compliance. However, the variability of neuropathic pain symptoms in each cycle for individual patients and the impacts on treatment compliance remain untested. Data from 322 adult patients who received oxaliplatin-based chemotherapy were extracted based on pattern of chemotherapy, adverse events, and patient survival. Cox regression and survival analyses were employed. Seventy-eight percent of patients developed neuropathic pain that oscillated between a complete absence and presence on a cycle-by-cycle basis. Consequently, the presence of neuropathy in one cycle did not predict the incidence of neuropathy in subsequent cycles. This implies that neuropathic pain need not be a sufficient criterion to reduce, delay, or cease chemotherapy. In the case of multiple system adverse events during combined drug treatment, the responsible cause for dose reduction was not identified. Cox regression analysis revealed that middle age (61-78 years old, P=0.003) and oxaliplatin cumulative dose <850 mg/m2 (P=0.002) were associated with patient mortality. Completion of chemotherapy (8 cycles) and cumulative dose >850 mg/m2 of oxaliplatin prolonged the median survival time by 8 and 5 months, respectively. As oxaliplatin-induced neuropathic pain fluctuates across cycles in a manner that varies from patient-to-patient, current assumptions on the predictive nature of the emergence of neuropathy (and its impact on treatment compliance) need to be reconsidered. Detailed patient-by-patient analysis of adverse events should be applied to future studies in order to determine the efficacy of current treatments (and future interventions) and whether neuropathic pain should be retained as a criterion to vary the treatment. Additionally, when two or more system toxicities occurred in cases of combined drug treatment, the causes for drug reduction should be separately recorded.

13.
Neurosci Biobehav Rev ; 107: 23-46, 2019 12.
Article in English | MEDLINE | ID: mdl-31442519

ABSTRACT

The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.


Subject(s)
Behavior, Animal/physiology , Demyelinating Diseases/chemically induced , Disease Models, Animal , Myelin Sheath/pathology , Oligodendroglia/pathology , Animals , Cuprizone , Demyelinating Diseases/pathology
14.
Cells ; 8(11)2019 10 24.
Article in English | MEDLINE | ID: mdl-31653054

ABSTRACT

Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the 'inside-out' theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the 'inside-out' role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.


Subject(s)
Adaptive Immunity/immunology , Immune System/metabolism , Multiple Sclerosis/metabolism , Animals , Brain/metabolism , Computational Biology/methods , Cuprizone/metabolism , Cuprizone/pharmacology , Cytokines/metabolism , Demyelinating Diseases/metabolism , Disease Models, Animal , Gliosis/metabolism , Immune System/immunology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Mitochondria/metabolism , Oligodendroglia/metabolism
15.
Neurosci Lett ; 433(3): 231-4, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18280043

ABSTRACT

Flow cytometry and terminal deoxynucleotidyl transferase-mediated biotinylated uridine triphosphate nick end-labelling (TUNEL) immunohistochemistry have been used to assess cell death in the dorsal root ganglia (DRG) or spinal cord 1, 2 or 14 days after multiple lumbar dorsal root rhizotomy or dorsal root avulsion injury in adult rats. Neither injury induced significant cell death in the DRG compared to sham-operated or naïve animals at any time point. In the spinal cord, a significant increase in death was seen at 1-2 days, but not 14 days, post injury by both methods. TUNEL staining revealed that more apoptotic cells were present in the dorsal columns and dorsal horn of avulsion animals compared to rhizotomised animals. This suggests that avulsion injury, which can often partially damage the spinal cord, has more severe effects on cell survival than rhizotomy, a surgical lesion which does not affect the spinal cord. The location of TUNEL positive cells suggests that both neuronal and non-neuronal cells are dying.


Subject(s)
Ganglia, Spinal/physiopathology , Nerve Degeneration/physiopathology , Posterior Horn Cells/physiopathology , Rhizotomy/adverse effects , Spinal Nerve Roots/injuries , Spinal Nerve Roots/physiopathology , Afferent Pathways/pathology , Afferent Pathways/physiopathology , Animals , Apoptosis/physiology , Axons/pathology , Cell Death/physiology , Ganglia, Spinal/pathology , In Situ Nick-End Labeling , Male , Nerve Degeneration/pathology , Neurons, Afferent/pathology , Posterior Horn Cells/pathology , Radiculopathy/pathology , Radiculopathy/physiopathology , Rats , Rats, Wistar , Spinal Nerve Roots/pathology , Survival/physiology , Time Factors , Wallerian Degeneration/pathology , Wallerian Degeneration/physiopathology
16.
Neurosci Lett ; 654: 49-55, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28636927

ABSTRACT

Noxious stimulation of sensory afferents evokes phosphorylated extracellular signal regulated kinase (pERK) expression in spinal cord neurons. This study investigated the expression of pERK in the dorsal horn neurons in response to innocuous and noxious cold stimuli in naïve versus spared nerve injury (SNI) rats. Noxious cold or hot stimuli (0 or 45°C) elicited pERK expression in laminae I-II whereas cooling stimuli from 32°C to 25, 15 or 5°C produced no or little pERK expression in dorsal horn neurons. Five days after SNI, a time when these animals showed heat hyperalgesia, cold and mechanical hypersensitivity, only noxious heat stimuli produced a significant increase in pERK expression compared to naïve rats in spinal cord neurons. Thus, pERK cannot be used as an activity marker for neurons responding to cooling stimuli or cold allodynia; however, these results confirm the role of pERK as an activity marker for heat hyperalgesia.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/biosynthesis , Hyperalgesia/metabolism , Peripheral Nerve Injuries/metabolism , Posterior Horn Cells/metabolism , Animals , Female , Male , Rats , Rats, Long-Evans
17.
J Tissue Eng Regen Med ; 11(1): 129-137, 2017 01.
Article in English | MEDLINE | ID: mdl-24753366

ABSTRACT

Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd.


Subject(s)
Embryonic Stem Cells/cytology , Neural Crest/cytology , Neurons/cytology , Spinal Nerve Roots/pathology , Animals , Axons/physiology , Cell Differentiation , Cell Line , Cell Movement , Cell Survival , Cell Transplantation , Female , Ganglia, Spinal/cytology , Inflammation , Mice , Mice, Inbred C57BL , Nerve Regeneration/physiology , Neural Stem Cells/cytology , Neuroglia/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology
18.
J Neurosci ; 22(17): 7493-501, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-12196572

ABSTRACT

The 16 kDa pancreatitis-associated protein Reg-2 has recently been shown to facilitate the regeneration of motor and sensory neurons after peripheral nerve injury in the adult rat. Reg-2 has also been shown to be a neurotrophic factor that is an essential intermediate in the pathways through which CNTF supports the survival of motor neurons during development. Here we report the dynamic expression of Reg-2 in rat sensory neurons after peripheral nerve injury. Reg-2 is normally not expressed by dorsal root ganglion (DRG) cells, but we show, using immunocytochemistry, that Reg-2 is rapidly upregulated in DRG cells after sciatic nerve transection and after 24 hr recovery is expressed almost exclusively in small-diameter neurons that bind the lectin Griffonia simplicifolia IB4 and express the purinoceptor P2X3. However, by 7 d after axotomy, Reg-2 is expressed in medium to large neurons and coexists partly with the neuropeptides galanin and neuropeptide Y, which are also upregulated after peripheral nerve transection. At this time point, Reg-2 is no longer expressed in small neurons, and there is no colocalization with IB4 binding neurons, demonstrating a shift in Reg-2 expression from one subset of DRG neurons to another. We also show by double labeling for activating transcription factor 3, a transcription factor that is upregulated after nerve injury, that Reg-2 expression occurs predominantly in axotomized DRG cells but that a small percentage of uninjured DRG cells also upregulate Reg-2. The selective expression within IB4/P2X3 cells, and the dynamic shift from small to large cells, is unique among DRG peptides and suggests that Reg-2 has a distinctive role in the injury response.


Subject(s)
Calcium-Binding Proteins/biosynthesis , Neurons, Afferent/metabolism , Peripheral Nerve Injuries , Peripheral Nerves/physiopathology , Sciatic Neuropathy/physiopathology , Activating Transcription Factor 3 , Animals , Axonal Transport , Axotomy , Cell Size , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Immunohistochemistry , Lithostathine , Lumbosacral Region , Male , Nerve Crush , Nerve Tissue Proteins/biosynthesis , Neurons, Afferent/pathology , Pancreatitis-Associated Proteins , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Time Factors , Transcription Factors/biosynthesis
19.
J Pain ; 15(6): 664-75, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24667712

ABSTRACT

UNLABELLED: Spinal root avulsion produces tactile and thermal hypersensitivity, neurodegeneration, and microglial and astrocyte activation in both the deafferented and the adjacent intact spinal cord segments. Following avulsion of the fifth lumbar spinal root, immediate and prolonged treatment with riluzole or minocycline for 2 weeks altered the development of behavioral hypersensitivity. Riluzole delayed the onset of thermal and tactile hypersensitivity and partially reversed established pain behavior. Minocycline effectively prevented and reversed both types of behavioral change. Histologic analysis revealed that both drugs reduced microglial staining in the spinal cord, with minocycline being more effective than riluzole. Astrocyte activation was ameliorated to a lesser extent. Surprisingly, neither drug provided a neuroprotective effect on avulsed motoneurons. PERSPECTIVE: Immediate treatment of spinal root avulsion injuries with minocycline or riluzole prevents the onset of evoked pain hypersensitivity by reducing microglial cell activation. When treatment is delayed, minocycline, but not riluzole, reverses pre-established hypersensitivity. Thus, these drugs may provide a new translational treatment option for chronic avulsion injury pain.


Subject(s)
Neuroprotective Agents/therapeutic use , Pain/etiology , Riluzole/therapeutic use , Spinal Cord Injuries/complications , Animals , Disease Models, Animal , Functional Laterality , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Male , Minocycline/pharmacology , Minocycline/therapeutic use , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Pain Threshold/drug effects , Phosphopyruvate Hydratase/metabolism , Rats , Rats, Wistar , Riluzole/pharmacology , Spinal Nerve Roots/metabolism , Spinal Nerve Roots/pathology , Time Factors
20.
J Neurotrauma ; 30(3): 160-72, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-22934818

ABSTRACT

Road traffic accidents are the most common cause of avulsion injury, in which spinal roots are torn from the spinal cord. Patients suffer from a loss of sensorimotor function, intractable spontaneous pain, and border-zone hypersensitivity. The neuropathic pains are particularly difficult to treat because the lack of a well-established animal model of avulsion injury prevents identifying the underlying mechanisms and hinders the development of efficacious drugs. This article describes a hindlimb model of avulsion injury in adult rats where the L5 dorsal and ventral spinal root are unilaterally avulsed (spinal root avulsion [SRA]), leaving the adjacent L4 spinal root intact. SRA produced a significant ipsilateral hypersensitivity to mechanical and thermal stimulation by 5 days compared with sham-operated or naïve rats. This hypersensitivity is maintained for up to 60 days. No autotomy was observed and locomotor deficits were minimal. The hypersensitivity to peripheral stimuli could be temporarily ameliorated by administration of amitriptyline and carbamazepine, drugs that are currently prescribed to avulsion patients. Histological assessment of the L4 ganglion cells revealed no significant alterations in calcitonin gene-related peptide (CGRP), IB4, transient receptor potential cation channel subfamily V member 1 (TrpV1), or N52 staining across groups. Immunohistochemistry of the spinal cord revealed a localized glial response, phagocyte infiltration, and neuronal loss within the ipsilateral avulsed segment. A comparable response from glia and phagocytes was also found in the intact L4 spinal cord, supporting the role for central mechanisms within the L4-5 spinal cord in contributing to the generation of the pain-related behavior. The SRA model provides a platform to investigate possible new pharmacological treatments for avulsion injuries.


Subject(s)
Disease Models, Animal , Neuralgia/etiology , Radiculopathy/complications , Animals , Immunohistochemistry , Lumbar Vertebrae , Neuralgia/pathology , Neuralgia/physiopathology , Radiculopathy/pathology , Radiculopathy/physiopathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL