Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Br J Cancer ; 129(8): 1261-1273, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37644092

ABSTRACT

BACKGROUND: Recent studies suggested that NDUFS1 has an important role in human cancers; however, the effects of NDUFS1 on gastric cancer (GC) are still not fully understood. METHODS: We confirmed that NDUFS1 is downregulated in GC cells through western blot immunohistochemistry and bioinformation analysis. The effect of NDUFS1 on GC was studied by CCK-8, colony formation, transwell assay in vitro and Mouse xenograft assay in vivo. Expression and subcellular localization of NDUFS1 and the content of mitochondrial reactive oxygen species (mROS) was observed by confocal reflectance microscopy. RESULTS: Reduced expression of NDUFS1 was found in GC tissues and cell lines. Also, NDUFS1 overexpression inhibited GC cell proliferation, migration, and invasion in vitro as well as growth and metastasis in vivo. Mechanistically, NDUFS1 reduction led to the activation of the mROS-hypoxia-inducible factor 1α (HIF1α) signaling pathway. We further clarified that NDUFS1 reduction upregulated the expression of fibulin 5 (FBLN5), a transcriptional target of HIF1α, through activation of mROS-HIF1α signaling in GC cells. CONCLUSIONS: The results of this study indicate that NDUFS1 downregulation promotes GC progression by activating an mROS-HIF1α-FBLN5 signaling pathway.

2.
Cancers (Basel) ; 16(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38201620

ABSTRACT

The peritoneum is the most common metastatic site of advanced gastric cancer and is associated with extremely poor prognosis. Endothelial-specific molecule 1 (ESM1) was found to be significantly associated with gastric cancer peritoneal metastasis (GCPM); however, the biological functions and molecular mechanisms of ESM1 in regulating GCPM remain unclear. Herein, we demonstrated that ESM1 expression was significantly upregulated in gastric cancer tissues and positively correlated with platelet endothelial cell adhesion molecule-1 (CD31) levels. Moreover, clinical validation, in in vitro and in vivo experiments, confirmed that ESM1 promoted gastric cancer angiogenesis, eventually promoting gastric cancer peritoneal metastasis. Mechanistically, ESM1 promoted tumor angiogenesis by binding to c-Met on the vascular endothelial cell membrane. In addition, our results confirmed that ESM1 upregulated VEGFA, HIF1α, and MMP9 expression and induced angiogenesis by activating the MAPK/ERK pathway. In conclusion, our findings identified the role of ESM1 in gastric cancer angiogenesis and GCPM, thus providing insights into the diagnosis and treatment of advanced gastric cancer.

3.
Oncogene ; 42(2): 83-98, 2023 01.
Article in English | MEDLINE | ID: mdl-36369321

ABSTRACT

Metastasis is an important factor contributing to poor prognosis in patients with gastric cancer; yet, the molecular mechanism leading to this cell behavior is still not well understood. In this study, we explored the role of cysteine protease inhibitor SN (Cystatin SN, CST1) in promoting gastric cancer metastasis. We hypothesized that CST1 could regulate gastric cancer progression by regulating GPX4 and ferroptosis. Whole transcriptome sequencing suggested that the expression of CST1 was significantly increased in metastatic cancer, and high CST1 expression was correlated with a worse prognosis. Our data further confirmed that the overexpression of CST1 may significantly promote the migration and invasion of gastric cancer cells in vitro and enhance liver, lung, and peritoneal metastasis of gastric cancer in nude mice. Meanwhile, high expression of CST1 promoted the epithelial-mesenchymal transition (EMT) of gastric cancer cells. Mechanistically, a co-immunoprecipitation experiment combined with mass spectrometry analysis confirmed that CST1 could interact with GPX4, a key protein regulating ferroptosis. CST1 relieves GPX4 ubiquitination modification by recruiting OTUB1, improving GPX4 protein stability and reducing intracellular reactive oxygen species (ROS), thereby inhibiting ferroptosis and, in turn, promoting gastric cancer metastasis. Moreover, clinical data suggested that CST1 is significantly increased in peripheral blood and ascites of gastric cancer patients with metastasis; multivariate Cox regression model analysis showed that CST1 was an independent risk factor for the prognosis of gastric cancer patients. Overall, our results elucidated a critical pathway through which high CST1 expression protects gastric cancer cells from undergoing ferroptosis, thus promoting its progression and metastasis. CST1 may be used as a new oncological marker and potential therapeutic target for gastric cancer metastasis.


Subject(s)
Ferroptosis , Stomach Neoplasms , Animals , Mice , Cell Line, Tumor , Salivary Cystatins/metabolism , Stomach Neoplasms/pathology , Mice, Nude , Ferroptosis/genetics
4.
J Exp Clin Cancer Res ; 40(1): 45, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33499874

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. METHODS: QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study. RESULTS: We found that LINC00680 was remarkably upregulated in HCC tissues. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K. CONCLUSION: LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


Subject(s)
Carcinoma, Hepatocellular/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Animals , Biomarkers, Tumor , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Computational Biology/methods , Female , Gene Expression Profiling , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Neoplasm Staging , Neoplastic Stem Cells , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , ROC Curve , Signal Transduction , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL