Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Science ; 231(4744): 1408-11, 1986 Mar 21.
Article in English | MEDLINE | ID: mdl-17748080

ABSTRACT

The VEGA Venus balloon radio transmissions received on Earth were used to measure the motion of the balloons and to obtain the data recorded by onboard sensors measuring atmospheric characteristics. Thus the balloons themselves, the gondolas, the onboard sensors, and the radio transmission system were all components of the experiment. A description of these elements is given, and a few details of data sampling and formatting are discussed.

2.
Science ; 231(4744): 1420-2, 1986 Mar 21.
Article in English | MEDLINE | ID: mdl-17748084

ABSTRACT

Thermal structure measurements obtained by the two VEGA balloons show the Venus middle cloud layer to be generally adiabatic. Temperatures measured by the two balloons at locations roughly symmetric about the equator differed by about 6.5 kelvins at a given pressure. The VEGA-2 temperatures were about 2.5 kelvins cooler and those of VEGA-1 about 4 kelvins warmer than temperatures measured by the Pioneer Venus Large Probe at these levels. Data taken by the VEGA-2 lander as it passed through the middle cloud agreed with those of the VEGA-2 balloon. Study of individual frames of the balloon data suggests the presence of multiple discrete air masses that are internally adiabatic but lie on slightly different adiabats. These adiabats, for a given balloon, can differ in temperature by as much as 1 kelvin at a given pressure.

3.
Science ; 231(4744): 1411-4, 1986 Mar 21.
Article in English | MEDLINE | ID: mdl-17748081

ABSTRACT

The VEGA balloons made in situ measurements of pressure, temperature, vertical wind velocity, ambient light, frequency of lightning, and cloud particle backscatter. Both balloons encountered highly variable atmospheric conditions, with periods of intense vertical winds occurring sporadically throughout their flights. Downward winds as large as 3.5 meters per second occasionally forced the balloons to descend as much as 2.5 kilometers below their equilibrium float altitudes. Large variations, in pressure, temperature, ambient light level, and cloud particle backscatter (VEGA-1 only) correlated well during these excursions, indicating that these properties were strong functions of altitude in those parts of the middle cloud layer sampled by the balloons.

4.
Science ; 231(4744): 1417-9, 1986 Mar 21.
Article in English | MEDLINE | ID: mdl-17748083

ABSTRACT

The VEGA balloons provided a long-term record of vertical wind fluctuations in a planetary atmosphere other than Earth's. The vertical winds were calculated from the observed displacement of the balloon relative to its equilibrium float altitude. The winds were intermittent; a large burst lasted several hours, and the peak velocity was 3 meters per second.

SELECTION OF CITATIONS
SEARCH DETAIL