Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(28): 7888-93, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27339136

ABSTRACT

Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 µM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes.


Subject(s)
Ammonia/metabolism , Archaea/physiology , Hydrogen Peroxide/metabolism , Archaea/isolation & purification , Genome, Bacterial , Nitrification , Oxidation-Reduction , Peroxidase/metabolism
2.
Int J Syst Evol Microbiol ; 67(7): 2397-2402, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28708058

ABSTRACT

A taxonomic study was conducted on strain soj2014T, which was isolated from the surface water of a polynya in the Antarctic Sea. Comparative 16S rRNA gene sequence analysis showed that strain soj2014T belongs to the family Kiloniellaceae and is closely related to Kiloniella spongiae MEBiC09566T, 'Kiloniella litopenaei' P1-1T and Kiloniella laminariae LD81T (98.0 %, 97.8 % and 96.2 % 16S rRNA gene sequence similarity, respectively). The DNA-DNA hybridization values between strain soj2014T and closely related strains were below 28.6 %. The G+C content of the genomic DNA of strain soj2014T was 45.5 mol%. The predominant cellular fatty acids were summed feature 8 (composed of C18 : 1ω6c/C18 : 1ω7c, 57.0 %) and summed feature 3 (composed of C16 : 1ω6c/C16 : 1ω7c, 23.5 %). Strain soj2014T was Gram-stain-negative, slightly curved, spiral-shaped, and motile with a single polar flagellum. The strain grew at 0-30 °C (optimum, 25 °C), in 1.5-5.1 % (w/v) NaCl (optimum, 2.1-2.4 %) and at pH 5.5-9.5 (optimum, 7.5-8.0). It also had differential carbohydrate utilization traits and enzyme activities compared with closely related strains. Based on these phylogenetic, phenotypic and chemotaxonomic analyses, strain soj2014T represents a distinct species, separable from the reference strains, and is, therefore, proposed as a novel species, Kiloniella antarctica sp. nov. The type strain is soj2014T (=KCTC 42186T=JCM 30386T).


Subject(s)
Alphaproteobacteria/classification , Phylogeny , Seawater/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Antarctic Regions , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Int J Syst Evol Microbiol ; 65(Pt 5): 1694-1699, 2015 May.
Article in English | MEDLINE | ID: mdl-25736409

ABSTRACT

A Gram-stain-negative, motile by gliding, rod-shaped bacterial strain, designated SOJ2014-1(T) was isolated from surface water of a polynya in the Antarctic Ocean. A comparative 16S rRNA gene sequence analysis showed that strain SOJ2014-1(T) belongs to the genus Leeuwenhoekiella and is most closely related to Leeuwenhoekiella marinoflava DSM 3653(T) (97.5% 16S rRNA gene sequence similarity). The G+C content of the genomic DNA of strain SOJ2014-1(T) was 38.8 mol%. Its predominant cellular fatty acids were summed feature 3 (composed of C16 : 1ω6c and/or C16 : 1ω7c), iso-C17 : 0 3-OH, iso-C15 : 0, iso-C15 : 1 G and summed feature 9 (composed of iso-C17 : 1ω9c and/or 10-methyl C16 : 0). DNA-DNA relatedness between strain SOJ2014-1(T) and close relatives, L. marinoflava DSM 3653(T) and Leeuwenhoekiella aequorea LMG 22550(T), was below 49%. The respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and two unidentified lipids. The strain grew at 0-35 °C (optimum, 25 °C) with 0-14.0% (w/v) NaCl (optimum, 1.0-5.0%). It was strictly aerobic and had different carbohydrate utilization traits compared with L. marinoflava DSM 3653(T). Based on the phenotypic, chemotaxonomic and phylogenetic analyses, strain SOJ2014-1(T) is proposed as a representative of a novel species, Leeuwenhoekiella polynyae. The type strain is SOJ2014-1(T) ( =KCTC 42185(T) =JCM 30387(T)).


Subject(s)
Flavobacteriaceae/classification , Phylogeny , Seawater/microbiology , Antarctic Regions , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Molecular Sequence Data , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
4.
Environ Microbiol Rep ; 8(6): 983-992, 2016 12.
Article in English | MEDLINE | ID: mdl-27700018

ABSTRACT

A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.


Subject(s)
Ammonia/metabolism , Archaea/isolation & purification , Archaea/metabolism , Environmental Microbiology , Archaea/classification , Archaea/cytology , Carbon/metabolism , Coal Tar , Environmental Pollutants , Oxidation-Reduction , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL