Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 308(1): G1-G11, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25394659

ABSTRACT

Narrow muscle strips have been extensively used to study intestinal contractility. Larger specimens from laboratory animals have provided detailed understanding of mechanisms that underlie patterned intestinal motility. Despite progress in animal tissue, investigations of motor patterns in large, intact specimens of human gut ex vivo have been sparse. In this study, we tested whether neurally dependent motor patterns could be detected in isolated specimens of intact human ileum. Specimens (n = 14; 7-30 cm long) of terminal ileum were obtained with prior informed consent from patients undergoing colonic surgery for removal of carcinomas. Preparations were set up in an organ bath with an array of force transducers, a fiberoptic manometry catheter, and a video camera. Spontaneous and distension-evoked motor activity was recorded, and the effects of lidocaine, which inhibits neural activity, were studied. Myogenic contractions (ripples) occurred in all preparations (6.17 ± 0.36/min). They were of low amplitude and formed complex patterns by colliding and propagating in both directions along the specimen at anterograde velocities of 4.1 ± 0.3 mm/s and retrogradely at 4.9 ± 0.6 mm/s. In five specimens, larger amplitude clusters of contractions were seen (discrete clustered contractions), which propagated aborally at 1.05 ± 0.13 mm/s and orally at 1.07 ± 0.09 mm/s. These consisted of two to eight phasic contractions that aligned with ripples. These motor patterns were abolished by addition of lidocaine (0.3 mM). The ripples continued unchanged in the presence of this neural blocking agent. These results demonstrate that both myogenic and neurogenic motor patterns can be studied in isolated specimens of human small intestine.


Subject(s)
Enteric Nervous System/physiology , Gastrointestinal Motility , Ileum/innervation , Muscle Contraction , Muscle, Smooth/innervation , Aged , Aged, 80 and over , Anesthetics, Local/pharmacology , Catheters , Enteric Nervous System/drug effects , Female , Fiber Optic Technology , Gastrointestinal Motility/drug effects , Humans , In Vitro Techniques , Lidocaine/pharmacology , Male , Manometry/instrumentation , Middle Aged , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Pressure , Time Factors , Transducers, Pressure , Video Recording
2.
Front Neurosci ; 7: 136, 2013.
Article in English | MEDLINE | ID: mdl-23935564

ABSTRACT

Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI) transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT) receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT). In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10 µM) and SDZ-205-557 (1-10 µM) in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

SELECTION OF CITATIONS
SEARCH DETAIL