Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
EMBO J ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886580

ABSTRACT

Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3ß kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.

2.
RNA ; 29(5): 705-712, 2023 05.
Article in English | MEDLINE | ID: mdl-36759126

ABSTRACT

N6-methyladenosine (m6A) is a widely studied and abundant RNA modification. The m6A mark regulates the fate of RNAs in various ways, which in turn drives changes in cell physiology, development, and disease pathology. Over the last decade, numerous methods have been developed to map and quantify m6A sites genome-wide through deep sequencing. Alternatively, m6A levels can be quantified from a population of RNAs using techniques such as liquid chromatography-mass spectrometry or thin layer chromatography. However, many methods for quantifying m6A levels involve extensive protocols and specialized data analysis, and often only a few samples can be handled in a single experiment. Here, we developed a simple method for determining relative m6A levels in mRNA populations from various sources based on an enzyme-linked immunosorbent-based assay (m6A-ELISA). We have optimized various steps of m6A-ELISA, such as sample preparation and the background signal resulting from the primary antibody. We validated the method using mRNA populations from budding yeast and mouse embryonic stem cells. The full protocol takes less than a day, requiring only 25 ng of mRNA. The m6A-ELISA protocol is quick, cost-effective, and scalable, making it a valuable tool for determining relative m6A levels in samples from various sources that could be adapted to detect other mRNA modifications.


Subject(s)
Antibodies , RNA , Animals , Mice , RNA, Messenger/genetics , RNA/genetics , Enzyme-Linked Immunosorbent Assay
3.
Nat Methods ; 18(9): 1060-1067, 2021 09.
Article in English | MEDLINE | ID: mdl-34480159

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent modification of messenger RNA in mammals. To interrogate its functions and dynamics, there is a critical need to quantify m6A at three levels: site, gene and sample. Current approaches address these needs in a limited manner. Here we develop m6A-seq2, relying on multiplexed m6A-immunoprecipitation of barcoded and pooled samples. m6A-seq2 allows a big increase in throughput while reducing technical variability, requirements of input material and cost. m6A-seq2 is furthermore uniquely capable of providing sample-level relative quantitations of m6A, serving as an orthogonal alternative to mass spectrometry-based approaches. Finally, we develop a computational approach for gene-level quantitation of m6A. We demonstrate that using this metric, roughly 30% of the variability in RNA half life in mouse embryonic stem cells can be explained, establishing m6A as a main driver of RNA stability. m6A-seq2 thus provides an experimental and analytic framework for dissecting m6A-mediated regulation at three different levels.


Subject(s)
Adenosine/analogs & derivatives , RNA Stability/genetics , Sequence Analysis, RNA/methods , Adenosine/analysis , Adenosine/genetics , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Expression , Half-Life , Meiosis , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/physiology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Yeasts/genetics
4.
J Cell Sci ; 125(Pt 21): 5073-83, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22946053

ABSTRACT

Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.


Subject(s)
Arsenites/pharmacology , Heat-Shock Proteins/metabolism , Protein Folding/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Cytoplasmic Granules/metabolism , Heat-Shock Proteins/antagonists & inhibitors , Luciferases, Firefly/biosynthesis , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis/drug effects , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors
5.
Proc Natl Acad Sci U S A ; 107(14): 6394-9, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20308573

ABSTRACT

Peroxiredoxins (Prxs) are ubiquitous antioxidants that protect cells against oxidative stress. We show that the yeast Tsa1/Tsa2 Prxs colocalize to ribosomes and function to protect the Sup35 translation termination factor against oxidative stress-induced formation of its heritable [PSI(+)] prion conformation. In a tsa1 tsa2 [psi(-)] [PIN(+)] strain, the frequency of [PSI(+)] de novo formation is significantly elevated. The Tsa1/Tsa2 Prxs, like other 2-Cys Prxs, have dual activities as peroxidases and chaperones, and we show that the peroxidase activity is required to suppress spontaneous de novo [PSI(+)] prion formation. Molecular oxygen is required for [PSI(+)] prion formation as growth under anaerobic conditions prevents prion formation in the tsa1 tsa2 mutant. Conversely, oxidative stress conditions induced by exposure to hydrogen peroxide elevates the rate of de novo [PSI(+)] prion formation leading to increased suppression of all three termination codons in the tsa1 tsa2 mutant. Altered translational fidelity in [PSI(+)] strains may provide a mechanism that promotes genetic variation and phenotypic diversity (True HL, Lindquist SL (2000) Nature 407:477-483). In agreement, we find that prion formation provides yeast cells with an adaptive advantage under oxidative stress conditions, as elimination of the [PSI(+)] prion from tsa1 tsa2 mutants renders the resulting [psi(-)] [pin(-)] cells hypersensitive to hydrogen peroxide. These data support a model in which Prxs function to protect the ribosomal machinery against oxidative damage, but when these systems become overwhelmed, [PSI(+)] prion formation provides a mechanism for uncovering genetic traits that aid survival during oxidative stress conditions.


Subject(s)
Peptide Termination Factors/metabolism , Peroxidases/metabolism , Peroxiredoxins/metabolism , Prions/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Mutation , Oxidative Stress , Oxygen/metabolism , Peptide Termination Factors/genetics , Peroxidases/genetics , Peroxiredoxins/genetics , Prions/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Elife ; 122023 07 25.
Article in English | MEDLINE | ID: mdl-37490041

ABSTRACT

N6-methyladenosine (m6A), the most abundant mRNA modification, is deposited in mammals/insects/plants by m6A methyltransferase complexes (MTC) comprising a catalytic subunit and at least five additional proteins. The yeast MTC is critical for meiosis and was known to comprise three proteins, of which two were conserved. We uncover three novel MTC components (Kar4/Ygl036w-Vir1/Dyn2). All MTC subunits, except for Dyn2, are essential for m6A deposition and have corresponding mammalian MTC orthologues. Unlike the mammalian bipartite MTC, the yeast MTC is unipartite, yet multifunctional. The mRNA interacting module, comprising Ime4, Mum2, Vir1, and Kar4, exerts the MTC's m6A-independent function, while Slz1 enables the MTC catalytic function in m6A deposition. Both functions are critical for meiotic progression. Kar4 also has a mechanistically separate role from the MTC during mating. The yeast MTC constituents play distinguishable m6A-dependent, MTC-dependent, and MTC-independent functions, highlighting their complexity and paving the path towards dissecting multi-layered MTC functions in mammals.


Subject(s)
Yeasts , Gene Expression , Yeasts/genetics , Methylation , RNA, Messenger , Meiosis
7.
J Biol Chem ; 286(45): 38924-31, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21832086

ABSTRACT

The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN(+)] and [PSI(+)], it does not overcome the requirement of cells being [PIN(+)] to form the [PSI(+)] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI(+)] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN(+)] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI(+)] prion formation.


Subject(s)
Mutation , Oxidative Stress , Peptide Termination Factors/metabolism , Peroxidases , Peroxiredoxins , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Methionine/genetics , Methionine/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Peptide Termination Factors/genetics , Prions/genetics , Prions/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
8.
Life Sci Alliance ; 5(12)2022 09 16.
Article in English | MEDLINE | ID: mdl-36114005

ABSTRACT

The directionality of gene promoters-the ratio of protein-coding over divergent noncoding transcription-is highly variable. How promoter directionality is controlled remains poorly understood. Here, we show that the chromatin remodelling complex RSC and general regulatory factors (GRFs) dictate promoter directionality by attenuating divergent transcription relative to protein-coding transcription. At gene promoters that are highly directional, depletion of RSC leads to a relative increase in divergent noncoding transcription and thus to a decrease in promoter directionality. We find that RSC has a modest effect on nucleosome positioning upstream in promoters at the sites of divergent transcription. These promoters are also enriched for the binding of GRFs such as Reb1 and Abf1. Ectopic targeting of divergent transcription initiation sites with GRFs or the dCas9 DNA-binding protein suppresses divergent transcription. Our data suggest that RSC and GRFs play a pervasive role in limiting divergent transcription relative to coding direction transcription. We propose that any DNA-binding factor, when stably associated with cryptic transcription start sites, forms a barrier which represses divergent transcription, thereby promoting promoter directionality.


Subject(s)
Nucleosomes , Transcription, Genetic , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nucleosomes/genetics , Promoter Regions, Genetic/genetics , Transcription, Genetic/genetics
9.
Elife ; 112022 11 24.
Article in English | MEDLINE | ID: mdl-36422864

ABSTRACT

N6- methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae, which occurs solely during early meiosis. Here, we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3'end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis.


Subject(s)
Exercise , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , RNA, Messenger/genetics , RNA Stability
10.
Nat Commun ; 12(1): 7198, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893601

ABSTRACT

RNA molecules undergo a vast array of chemical post-transcriptional modifications (PTMs) that can affect their structure and interaction properties. In recent years, a growing number of PTMs have been successfully mapped to the transcriptome using experimental approaches relying on high-throughput sequencing. Oxford Nanopore direct-RNA sequencing has been shown to be sensitive to RNA modifications. We developed and validated Nanocompore, a robust analytical framework that identifies modifications from these data. Our strategy compares an RNA sample of interest against a non-modified control sample, not requiring a training set and allowing the use of replicates. We show that Nanocompore can detect different RNA modifications with position accuracy in vitro, and we apply it to profile m6A in vivo in yeast and human RNAs, as well as in targeted non-coding RNAs. We confirm our results with orthogonal methods and provide novel insights on the co-occurrence of multiple modified residues on individual RNA molecules.


Subject(s)
Nanopore Sequencing/methods , Nanopores , RNA/metabolism , Sequence Analysis, RNA/methods , Base Sequence , Computational Biology , Gene Expression Profiling , Genetic Techniques , High-Throughput Nucleotide Sequencing , Humans , RNA/isolation & purification , RNA Processing, Post-Transcriptional , Software , Transcriptome
11.
Microb Cell ; 4(1): 16-28, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28191457

ABSTRACT

Prions are protein-based infectious entities associated with fatal brain diseases in animals, but also modify a range of host-cell phenotypes in the budding yeast, Saccharomyces cerevisiae. Many questions remain about the evolution and biology of prions. Although several functionally distinct prion-forming proteins exist in S. cerevisiae, [HET-s] of Podospora anserina is the only other known fungal prion. Here we investigated prion-like, protein-based epigenetic transmission in the fission yeast Schizosaccharomyces pombe. We show that S. pombe cells can support the formation and maintenance of the prion form of the S. cerevisiae Sup35 translation factor [PSI+], and that the formation and propagation of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating commonalities in prion propagation machineries in these evolutionary diverged yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as a putative prion with a predicted prion-like domain. Overexpression of the ctr4 gene resulted in large Ctr4 protein aggregates that were both detergent and proteinase-K resistant. Cells carrying such [CTR+] aggregates showed increased sensitivity to oxidative stress, and this phenotype could be transmitted to aggregate-free [ctr-] cells by transformation with [CTR+] cell extracts. Moreover, this [CTR+] phenotype was inherited in a non-Mendelian manner following mating with naïve [ctr-] cells, but intriguingly the [CTR+] phenotype was not eliminated by guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features diagnostic of other fungal prions and is the first example of a prion in fission yeast. These findings suggest that transmissible protein-based determinants of traits may be more widespread among fungi.

12.
Nat Genet ; 47(3): 235-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25665008

ABSTRACT

Natural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the usefulness of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all strains, finding moderate genetic diversity (π = 3 × 10(-3) substitutions/site) and weak global population structure. We estimate that dispersal of S. pombe began during human antiquity (∼340 BCE), and ancestors of these strains reached the Americas at ∼1623 CE. We quantified 74 traits, finding substantial heritable phenotypic diversity. We conducted 223 genome-wide association studies, with 89 traits showing at least one association. The most significant variant for each trait explained 22% of the phenotypic variance on average, with indels having larger effects than SNPs. This analysis represents a rich resource to examine genotype-phenotype relationships in a tractable model.


Subject(s)
Genome, Fungal , Schizosaccharomyces/genetics , Genetic Variation , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide
13.
Biol Open ; 3(10): 913-23, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25217615

ABSTRACT

Protein aggregation is a widespread phenomenon in cells and associated with pathological conditions. Yet, little is known about the rules that govern protein aggregation in living cells. In this study, we biochemically isolated aggregation-prone proteins and used computational analyses to identify characteristics that are linked to physiological and arsenite-induced aggregation in living yeast cells. High protein abundance, extensive physical interactions, and certain structural properties are positively correlated with an increased aggregation propensity. The aggregated proteins have high translation rates and are substrates of ribosome-associated Hsp70 chaperones, indicating that they are susceptible for aggregation primarily during translation/folding. The aggregation-prone proteins are enriched for multiple chaperone interactions, thus high protein abundance is probably counterbalanced by molecular chaperones to allow soluble expression in vivo. Our data support the notion that arsenite interferes with chaperone activity and indicate that arsenite-aggregated proteins might engage in extensive aberrant protein-protein interactions. Expression of aggregation-prone proteins is down-regulated during arsenite stress, possibly to prevent their toxic accumulation. Several aggregation-prone yeast proteins have human homologues that are implicated in misfolding diseases, suggesting that similar mechanisms may apply in disease- and non-disease settings.

14.
G3 (Bethesda) ; 5(1): 145-55, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25452419

ABSTRACT

Genetic factors underlying aging are remarkably conserved from yeast to human. The fission yeast Schizosaccharomyces pombe is an emerging genetic model to analyze cellular aging. Chronological lifespan (CLS) has been studied in stationary-phase yeast cells depleted for glucose, which only survive for a few days. Here, we analyzed CLS in quiescent S. pombe cells deprived of nitrogen, which arrest in a differentiated, G0-like state and survive for more than 2 months. We applied parallel mutant phenotyping by barcode sequencing (Bar-seq) to assay pooled haploid deletion mutants as they aged together during long-term quiescence. As expected, mutants with defects in autophagy or quiescence were under-represented or not detected. Lifespan scores could be calculated for 1199 mutants. We focus the discussion on the 48 most long-lived mutants, including both known aging genes in other model systems and genes not previously implicated in aging. Genes encoding membrane proteins were particularly prominent as pro-aging factors. We independently verified the extended CLS in individual assays for 30 selected mutants, showing the efficacy of the screen. We also applied Bar-seq to profile all pooled deletion mutants for proliferation under a standard growth condition. Unlike for stationary-phase cells, no inverse correlation between growth and CLS of quiescent cells was evident. These screens provide a rich resource for further studies, and they suggest that the quiescence model can provide unique, complementary insights into cellular aging.


Subject(s)
Mutation , Schizosaccharomyces/genetics , DNA Barcoding, Taxonomic , DNA, Fungal/genetics , Schizosaccharomyces/growth & development
15.
Mol Biol Cell ; 23(18): 3582-90, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22855532

ABSTRACT

Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary "Achilles' heel" of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster-defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily (55)FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress-related disease.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Iron-Sulfur Proteins/metabolism , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , ATP-Binding Cassette Transporters/genetics , Blotting, Western , Cell Division/drug effects , Copper/pharmacology , Cycloheximide/pharmacology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Fungal , Genes, Essential/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Iron-Sulfur Proteins/genetics , Microscopy, Fluorescence , Mutation , Protein Transport/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
16.
Microbiology (Reading) ; 155(Pt 2): 612-623, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19202110

ABSTRACT

Methionine residues and iron-sulphur (FeS) clusters are primary targets of reactive oxygen species in the proteins of micro-organisms. Here, we show that methionine redox modifications help to preserve essential FeS cluster activities in yeast. Mutants defective for the highly conserved methionine sulphoxide reductases (MSRs; which re-reduce oxidized methionines) are sensitive to many pro-oxidants, but here exhibited an unexpected copper resistance. This phenotype was mimicked by methionine sulphoxide supplementation. Microarray analyses highlighted several Cu and Fe homeostasis genes that were upregulated in the mxrDelta double mutant, which lacks both of the yeast MSRs. Of the upregulated genes, the Cu-binding Fe transporter Fet3p proved to be required for the Cu-resistance phenotype. FET3 is known to be regulated by the Aft1 transcription factor, which responds to low mitochondrial FeS-cluster status. Here, constitutive Aft1p expression in the wild-type reproduced the Cu-resistance phenotype, and FeS-cluster functions were found to be defective in the mxrDelta mutant. Genetic perturbation of FeS activity also mimicked FET3-dependent Cu resistance. 55Fe-labelling studies showed that FeS clusters are turned over more rapidly in the mxrDelta mutant than the wild-type, consistent with elevated oxidative targeting of the clusters in MSR-deficient cells. The potential underlying molecular mechanisms of this targeting are discussed. Moreover, the results indicate an important new role for cellular MSR enzymes in helping to protect the essential function of FeS clusters in aerobic settings.


Subject(s)
Iron/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Saccharomyces cerevisiae/metabolism , Sulfur/metabolism , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Copper/metabolism , Gene Expression Regulation, Fungal , Methionine Sulfoxide Reductases , Multigene Family , Oxidoreductases/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
17.
Genome Biol ; 8(12): R268, 2007.
Article in English | MEDLINE | ID: mdl-18088421

ABSTRACT

BACKGROUND: The serious biological consequences of metal toxicity are well documented, but the key modes of action of most metals are unknown. To help unravel molecular mechanisms underlying the action of chromium, a metal of major toxicological importance, we grew over 6,000 heterozygous yeast mutants in competition in the presence of chromium. Microarray-based screens of these heterozygotes are truly genome-wide as they include both essential and non-essential genes. RESULTS: The screening data indicated that proteasomal (protein degradation) activity is crucial for cellular chromium (Cr) resistance. Further investigations showed that Cr causes the accumulation of insoluble and toxic protein aggregates, which predominantly arise from proteins synthesised during Cr exposure. A protein-synthesis defect provoked by Cr was identified as mRNA mistranslation, which was oxygen-dependent. Moreover, Cr exhibited synergistic toxicity with a ribosome-targeting drug (paromomycin) that is known to act via mistranslation, while manipulation of translational accuracy modulated Cr toxicity. CONCLUSION: The datasets from the heterozygote screen represent an important public resource that may be exploited to discover the toxic mechanisms of chromium. That potential was validated here with the demonstration that mRNA mistranslation is a primary cause of cellular Cr toxicity.


Subject(s)
Chromium/pharmacology , Gene Deletion , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Heterozygote , Oligonucleotide Array Sequence Analysis , Protein Biosynthesis/drug effects , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
18.
Microbiology (Reading) ; 151(Pt 6): 1939-1948, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15942001

ABSTRACT

Oxidative damage in microbial cells occurs during exposure to the toxic metal chromium, but it is not certain whether such oxidation accounts for the toxicity of Cr. Here, a Saccharomyces cerevisiae sod1Delta mutant (defective for the Cu,Zn-superoxide dismutase) was found to be hypersensitive to Cr(VI) toxicity under aerobic conditions, but this phenotype was suppressed under anaerobic conditions. Studies with cells expressing a Sod1p variant (Sod1(H46C)) showed that the superoxide dismutase activity rather than the metal-binding function of Sod1p was required for Cr resistance. To help identify the macromolecular target(s) of Cr-dependent oxidative damage, cells deficient for the reduction of phospholipid hydroperoxides (gpx3Delta and gpx1Delta/gpx2Delta/gpx3Delta) and for the repair of DNA oxidation (ogg1Delta and rad30Delta/ogg1Delta) were tested, but were found not to be Cr-sensitive. In contrast, S. cerevisiae msraDelta (mxr1Delta) and msrbDelta (ycl033cDelta) mutants defective for peptide methionine sulfoxide reductase (MSR) activity exhibited a Cr sensitivity phenotype, and cells overexpressing these enzymes were Cr-resistant. Overexpression of MSRs also suppressed the Cr sensitivity of sod1Delta cells. The inference that protein oxidation is a primary mechanism of Cr toxicity was corroborated by an observed approximately 20-fold increase in the cellular levels of protein carbonyls within 30 min of Cr exposure. Carbonylation was not distributed evenly among the expressed proteins of the cells; certain glycolytic enzymes and heat-shock proteins were specifically targeted by Cr-dependent oxidative damage. This study establishes an oxidative mode of Cr toxicity in S. cerevisiae, which primarily involves oxidative damage to cellular proteins.


Subject(s)
Chromium/toxicity , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Aerobiosis , Anaerobiosis , DNA Glycosylases/genetics , DNA Repair/genetics , DNA-Directed DNA Polymerase/genetics , Gene Deletion , Glutathione Peroxidase/genetics , Methionine Sulfoxide Reductases , Oxidation-Reduction , Oxidoreductases/genetics , Phospholipids/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Superoxide Dismutase/analysis , Superoxide Dismutase/genetics , Superoxide Dismutase-1
SELECTION OF CITATIONS
SEARCH DETAIL