Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Publication year range
1.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442408

ABSTRACT

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Subject(s)
Dipeptidases/metabolism , Neutrophils/physiology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Animals , Cilastatin/pharmacology , Cilastatin/therapeutic use , Dipeptidases/antagonists & inhibitors , Dipeptidases/genetics , Disease Models, Animal , Endotoxemia/mortality , Endotoxemia/pathology , Endotoxemia/prevention & control , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/immunology , Liver/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Neutrophil Infiltration/drug effects , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Survival Rate
2.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38039967

ABSTRACT

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Subject(s)
Extracellular Traps , Triple Negative Breast Neoplasms , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cytokines , Extracellular Traps/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
3.
Nature ; 614(7948): 548-554, 2023 02.
Article in English | MEDLINE | ID: mdl-36725934

ABSTRACT

Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution1-9. Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns. We resolve more than 1.6 million cells, enabling spatial analysis of immune lineages and activation states with distinct clinical correlates, including survival. Using deep learning, we can predict with high accuracy those patients who will progress after surgery using a single 1-mm2 tumour core, which could be informative for clinical management following surgical resection. Our dataset represents a valuable resource for the non-small cell lung cancer research community and exemplifies the utility of spatial resolution within single-cell analyses. This study also highlights how artificial intelligence can improve our understanding of microenvironmental features that underlie cancer progression and may influence future clinical practice.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/surgery , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Lung/pathology , Lung/surgery , Lung Neoplasms/diagnosis , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Tumor Microenvironment/immunology , Disease Progression , Deep Learning , Prognosis
4.
Nature ; 614(7948): 555-563, 2023 02.
Article in English | MEDLINE | ID: mdl-36725935

ABSTRACT

Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.


Subject(s)
Brain Neoplasms , Glioma , Single-Cell Analysis , Tumor Microenvironment , Humans , Brain/immunology , Brain/pathology , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Glioblastoma/immunology , Glioblastoma/pathology , Glioma/immunology , Glioma/pathology , Macrophages/enzymology , Tumor Microenvironment/immunology , Neoplasm Metastasis , Datasets as Topic
5.
Proc Natl Acad Sci U S A ; 121(4): e2318093121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232291

ABSTRACT

In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.


Subject(s)
RNA Helicases , Triple Negative Breast Neoplasms , Humans , Animals , Mice , RNA Helicases/genetics , RNA Helicases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Protein Biosynthesis , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Ribosomes/metabolism
6.
Genes Dev ; 33(3-4): 180-193, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30692208

ABSTRACT

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.


Subject(s)
Breast Neoplasms/physiopathology , Claudin-2/metabolism , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Microfilament Proteins/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Claudin-2/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/physiopathology , Lung Neoplasms/genetics , Lung Neoplasms/physiopathology , Microfilament Proteins/genetics , Neoplasm Metastasis , PDZ Domains , Prognosis , Survival Analysis , Tumor Cells, Cultured
7.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37313743

ABSTRACT

The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Animals , Mice , Humans , Female , Breast Neoplasms/pathology , Cell Line, Tumor , Neoplastic Cells, Circulating/pathology , Cell Movement/genetics , Cadherins , Neoplasm Metastasis
8.
Bioessays ; 43(1): e2000221, 2021 01.
Article in English | MEDLINE | ID: mdl-33165933

ABSTRACT

Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.


Subject(s)
Microfilament Proteins , Neoplasms , Adherens Junctions , Cell Adhesion , Cell Polarity , Humans , Neoplasms/genetics , Tight Junctions
9.
Br J Cancer ; 127(6): 988-1013, 2022 10.
Article in English | MEDLINE | ID: mdl-35650276

ABSTRACT

The first consensus guidelines for scoring the histopathological growth patterns (HGPs) of liver metastases were established in 2017. Since then, numerous studies have applied these guidelines, have further substantiated the potential clinical value of the HGPs in patients with liver metastases from various tumour types and are starting to shed light on the biology of the distinct HGPs. In the present guidelines, we give an overview of these studies, discuss novel strategies for predicting the HGPs of liver metastases, such as deep-learning algorithms for whole-slide histopathology images and medical imaging, and highlight liver metastasis animal models that exhibit features of the different HGPs. Based on a pooled analysis of large cohorts of patients with liver-metastatic colorectal cancer, we propose a new cut-off to categorise patients according to the HGPs. An up-to-date standard method for HGP assessment within liver metastases is also presented with the aim of incorporating HGPs into the decision-making processes surrounding the treatment of patients with liver-metastatic cancer. Finally, we propose hypotheses on the cellular and molecular mechanisms that drive the biology of the different HGPs, opening some exciting preclinical and clinical research perspectives.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Colorectal Neoplasms/pathology , Liver Neoplasms/pathology
10.
J Cell Sci ; 133(4)2020 02 21.
Article in English | MEDLINE | ID: mdl-31988150

ABSTRACT

Fluorescence illumination can cause phototoxicity that negatively affects living samples. This study demonstrates that much of the phototoxicity and photobleaching experienced with live-cell fluorescence imaging occurs as a result of 'illumination overhead' (IO). This occurs when a sample is illuminated but fluorescence emission is not being captured by the microscope camera. Several technological advancements have been developed, including fast-switching LED lamps and transistor-transistor logic (TTL) circuits, to diminish phototoxicity caused by IO. These advancements are not standard features on most microscopes and many biologists are unaware of their necessity for live-cell imaging. IO is particularly problematic when imaging rapid processes that require short exposure times. This study presents a workflow to optimize imaging conditions for measuring both slow and dynamic processes while minimizing phototoxicity on any standard microscope. The workflow includes a guide on how to (1) determine the maximum image exposure time for a dynamic process, (2) optimize excitation light intensity and (3) assess cell health with mitochondrial markers.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Biological Assay , Light , Microscopy, Fluorescence , Optical Imaging , Photobleaching
11.
J Biol Chem ; 295(31): 10535-10559, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32299913

ABSTRACT

SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor ß (TGFß)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFß enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFß-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFß-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFß. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFß, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.


Subject(s)
Cell Movement , Cytoskeletal Proteins/metabolism , LIM Domain Proteins/metabolism , Podosomes/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Cell Adhesion , Cell Line, Transformed , Cytoskeletal Proteins/genetics , Female , LIM Domain Proteins/genetics , Mice , Paxillin/genetics , Paxillin/metabolism , Podosomes/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Transforming Growth Factor beta
12.
Proc Natl Acad Sci U S A ; 115(10): E2202-E2209, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29463754

ABSTRACT

The translation of mRNAs into proteins serves as a critical regulatory event in gene expression. In the context of cancer, deregulated translation is a hallmark of transformation, promoting the proliferation, survival, and metastatic capabilities of cancer cells. The best-studied factor involved in the translational control of cancer is the eukaryotic translation initiation factor 4E (eIF4E). We and others have shown that eIF4E availability and phosphorylation promote metastasis in mouse models of breast cancer by selectively augmenting the translation of mRNAs involved in invasion and metastasis. However, the impact of translational control in cell types within the tumor microenvironment (TME) is unknown. Here, we demonstrate that regulatory events affecting translation in cells of the TME impact cancer progression. Mice bearing a mutation in the phosphorylation site of eIF4E (S209A) in cells comprising the TME are resistant to the formation of lung metastases in a syngeneic mammary tumor model. This is associated with reduced survival of prometastatic neutrophils due to decreased expression of the antiapoptotic proteins BCL2 and MCL1. Furthermore, we demonstrate that pharmacological inhibition of eIF4E phosphorylation prevents metastatic progression in vivo, supporting the development of phosphorylation inhibitors for clinical use.


Subject(s)
Breast Neoplasms/pathology , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Neutrophils/metabolism , Protein Biosynthesis , Tumor Microenvironment , Amino Acid Motifs , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Eukaryotic Initiation Factor-4E/chemistry , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, SCID , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Metastasis , Phosphorylation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Breast Cancer Res ; 22(1): 7, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941526

ABSTRACT

BACKGROUND: The p66ShcA redox protein is the longest isoform of the Shc1 gene and is variably expressed in breast cancers. In response to a variety of stress stimuli, p66ShcA becomes phosphorylated on serine 36, which allows it to translocate from the cytoplasm to the mitochondria where it stimulates the formation of reactive oxygen species (ROS). Conflicting studies suggest both pro- and anti-tumorigenic functions for p66ShcA, which prompted us to examine the contribution of tumor cell-intrinsic functions of p66ShcA during breast cancer metastasis. METHODS: We tested whether p66ShcA impacts the lung-metastatic ability of breast cancer cells. Breast cancer cells characteristic of the ErbB2+/luminal (NIC) or basal (4T1) subtypes were engineered to overexpress p66ShcA. In addition, lung-metastatic 4T1 variants (4T1-537) were engineered to lack endogenous p66ShcA via Crispr/Cas9 genomic editing. p66ShcA null cells were then reconstituted with wild-type p66ShcA or a mutant (S36A) that cannot translocate to the mitochondria, thereby lacking the ability to stimulate mitochondrial-dependent ROS production. These cells were tested for their ability to form spontaneous metastases from the primary site or seed and colonize the lung in experimental (tail vein) metastasis assays. These cells were further characterized with respect to their migration rates, focal adhesion dynamics, and resistance to anoikis in vitro. Finally, their ability to survive in circulation and seed the lungs of mice was assessed in vivo. RESULTS: We show that p66ShcA increases the lung-metastatic potential of breast cancer cells by augmenting their ability to navigate each stage of the metastatic cascade. A non-phosphorylatable p66ShcA-S36A mutant, which cannot translocate to the mitochondria, still potentiated breast cancer cell migration, lung colonization, and growth of secondary lung metastases. However, breast cancer cell survival in the circulation uniquely required an intact p66ShcA S36 phosphorylation site. CONCLUSION: This study provides the first evidence that both mitochondrial and non-mitochondrial p66ShcA pools collaborate in breast cancer cells to promote their maximal metastatic fitness.


Subject(s)
Breast Neoplasms/pathology , Lung Neoplasms/secondary , Mitochondria/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Phosphorylation
14.
Am J Pathol ; 189(7): 1451-1461, 2019 07.
Article in English | MEDLINE | ID: mdl-31202437

ABSTRACT

Prostate cancer (PC) commonly metastasizes to the bone, resulting in pathologic fractures and poor prognosis. CCN3/nephroblastoma overexpressed is a secreted protein with a known role in promoting breast cancer metastasis to bone. However, in PC, CCN3 has been ascribed conflicting roles; some studies suggest that CCN3 promotes PC metastasis, whereas others argue a tumor suppressor role for CCN3 in this disease. Indeed, in the latter context, CCN3 has been shown to sequester the androgen receptor (AR) and suppress AR signaling. In the present study, we demonstrate that CCN3 functions as a bone-metastatic mediator, which is dependent on its C-terminal domain for this function. Analysis of tissue microarrays comprising >1500 primary PC patient radical prostatectomy specimens reveals that CCN3 expression correlates with aggressive disease and is negatively correlated with the expression of prostate-specific antigen, a marker of AR signaling. Together, these findings point to CCN3 as a biomarker to predict PC aggressiveness while providing clarity on its role as a functional mediator of PC bone metastasis.


Subject(s)
Bone Neoplasms/metabolism , Nephroblastoma Overexpressed Protein/metabolism , Prostatic Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Kallikreins/biosynthesis , Kallikreins/genetics , Male , Neoplasm Metastasis , Neoplasm Proteins , Prostate-Specific Antigen/biosynthesis , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction/genetics
15.
Breast Cancer Res ; 20(1): 9, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382358

ABSTRACT

BACKGROUND: The Fos-related antigen 1 (FRA-1) transcription factor promotes tumor cell growth, invasion and metastasis. Phosphorylation of FRA-1 increases protein stability and function. We identify a novel signaling axis that leads to increased phosphorylation of FRA-1, increased extracellular matrix (ECM)-induced breast cancer cell invasion and is prognostic of poor outcome in patients with breast cancer. METHODS: While characterizing five breast cancer cell lines derived from primary human breast tumors, we identified BRC-31 as a novel basal-like cell model that expresses elevated FRA-1 levels. We interrogated the functional contribution of FRA-1 and an upstream signaling axis in breast cancer cell invasion. We extended this analysis to determine the prognostic significance of this signaling axis in samples derived from patients with breast cancer. RESULTS: BRC-31 cells display elevated focal adhesion kinase (FAK), SRC and extracellular signal-regulated (ERK2) phosphorylation relative to luminal breast cancer models. Inhibition of this signaling axis, with pharmacological inhibitors, reduces the phosphorylation and stabilization of FRA-1. Elevated integrin αVß3 and uPAR expression in these cells suggested that integrin receptors might activate this FAK-SRC-ERK2 signaling. Transient knockdown of urokinase/plasminogen activator urokinase receptor (uPAR) in basal-like breast cancer cells grown on vitronectin reduces FRA-1 phosphorylation and stabilization; and uPAR and FRA-1 are required for vitronectin-induced cell invasion. In clinical samples, a molecular component signature consisting of vitronectin-uPAR-uPA-FRA-1 predicts poor overall survival in patients with breast cancer and correlates with an FRA-1 transcriptional signature. CONCLUSIONS: We have identified a novel signaling axis that leads to phosphorylation and enhanced activity of FRA-1, a transcription factor that is emerging as an important modulator of breast cancer progression and metastasis.


Subject(s)
Breast Neoplasms/genetics , Proto-Oncogene Proteins c-fos/genetics , Receptors, Urokinase Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/genetics , Breast Neoplasms/pathology , Extracellular Matrix/genetics , Female , Humans , Integrin alphaVbeta3/administration & dosage , Integrin alphaVbeta3/genetics , MCF-7 Cells , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Phosphorylation , Signal Transduction/drug effects , Vitronectin/administration & dosage
16.
Anticancer Drugs ; 29(8): 774-785, 2018 09.
Article in English | MEDLINE | ID: mdl-29878901

ABSTRACT

Triple-negative breast cancer (TNBC) is typically aggressive, difficult to treat, and commonly metastasizes to the visceral organs and soft tissues, including the lungs and the brain. Taxanes represent the most effective and widely used therapeutic class in metastatic TNBC but possess limiting adverse effects that often result in a delay, reduction, or cessation of their use. DZ-2384 is a candidate microtubule-targeting agent with a distinct mechanism of action and strong activity in several preclinical cancer models, with reduced toxicities. DZ-2384 is highly effective in patient-derived taxane-sensitive and taxane-resistant xenograft models of TNBC at lower doses and over a wider range relative to paclitaxel. When comparing compound exposure at minimum effective doses relative to safe exposure levels, the therapeutic window for DZ-2384 is 14-32 compared with 2.0 and less than 2.8 for paclitaxel and docetaxel, respectively. DZ-2384 is effective at reducing brain metastatic lesions when used at maximum tolerated doses and is equivalent to paclitaxel. Drug distribution experiments indicate that DZ-2384 is taken up more efficiently by tumor tissue but at equivalent levels in the brain compared with paclitaxel. Selective DZ-2384 uptake by tumor tissue may in part account for its wider therapeutic window compared with taxanes. In view of the current clinical efforts to combine chemotherapy with immune checkpoint inhibitors, we demonstrate that DZ-2384 acts synergistically with anti-CTLA-4 immunotherapy in a syngeneic murine model. These results demonstrate that DZ-2384 has a superior pharmacologic profile over currently used taxanes and is a promising therapeutic agent for the treatment of metastatic TNBC.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Oxazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents, Immunological/administration & dosage , Brain/metabolism , CTLA-4 Antigen/immunology , Cell Line, Tumor , Drug Synergism , Female , Humans , Lactams, Macrocyclic/administration & dosage , Lactams, Macrocyclic/pharmacokinetics , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Oxazoles/administration & dosage , Oxazoles/pharmacokinetics , Random Allocation , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
17.
Mol Cell Proteomics ; 14(4): 1024-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25680959

ABSTRACT

Proteins in serum or plasma hold great potential for use in disease diagnosis and monitoring. However, the correlation between tumor burden and protein biomarker concentration has not been established. Here, using an antibody colocalization microarray, the protein concentration in serum was measured and compared with the size of mammary xenograft tumors in 11 individual mice from the time of injection; seven blood samples were collected from each tumor-bearing mouse as well as control mice on a weekly basis. The profiles of 38 proteins detected in sera from these animals were analyzed by clustering, and we identified 10 proteins with the greatest relative increase in serum concentration that correlated with growth of the primary mammary tumor. To evaluate the diagnosis of cancer based on these proteins using either an absolute threshold (i.e. a concentration cutoff) or self-referenced differential threshold based on the increase in concentration before cell injection, receiver operating characteristic curves were produced for 10 proteins with increased concentration, and the area under curve was calculated for each time point based on a single protein or on a panel of proteins, in each case showing a rapid increase of the area under curve. Next, the sensitivity and specificity of individual and optimal protein panels were calculated, showing high accuracy as early as week 2. These results provide a foundation for studies of tumor growth through measuring serial changes of protein concentration in animal models.


Subject(s)
Antibodies, Neoplasm/metabolism , Breast Neoplasms/metabolism , Disease Progression , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Neoplasm Proteins/metabolism , Protein Array Analysis/methods , Animals , Biomarkers, Tumor/metabolism , Blood Proteins/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cluster Analysis , Female , Humans , Immunoassay , Mice , ROC Curve , Reproducibility of Results , Time Factors , Tumor Burden , Xenograft Model Antitumor Assays
18.
J Cell Biochem ; 117(9): 1971-90, 2016 09.
Article in English | MEDLINE | ID: mdl-27392311

ABSTRACT

Phospho-tyrosine signaling networks control numerous biological processes including cellular differentiation, cell growth and survival, motility, and invasion. Aberrant regulation of the tyrosine kinome is a hallmark of malignancy and influences all stages of breast cancer progression, from initiation to the development of metastatic disease. The success of specific tyrosine kinase inhibitors strongly validates the clinical relevance of tyrosine phosphorylation networks in breast cancer pathology. However, a significant degree of redundancy exists within the tyrosine kinome. Numerous receptor and cytoplasmic tyrosine kinases converge on a core set of signaling regulators, including adaptor proteins and tyrosine phosphatases, to amplify pro-tumorigenic signal transduction pathways. Mutational activation, amplification, or overexpression of one or more components of the tyrosine kinome represents key contributing events responsible for the tumor heterogeneity that is observed in breast cancers. It is this molecular heterogeneity that has become the most significant barrier to durable clinical responses due to the development of therapeutic resistance. This review focuses on recent literature that supports a prominent role for specific components of the tyrosine kinome in the emergence of unique breast cancer subtypes and in shaping breast cancer plasticity, sensitivity to targeted therapies, and the eventual emergence of acquired resistance. J. Cell. Biochem. 117: 1971-1990, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Neoplasm Proteins , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases , Signal Transduction , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Female , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
19.
Breast Cancer Res ; 17: 45, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25882816

ABSTRACT

INTRODUCTION: Breast cancer cells display preferences for specific metastatic sites including the bone, lung and liver. Metastasis is a complex process that relies, in part, on interactions between disseminated cancer cells and resident/infiltrating stromal cells that constitute the metastatic microenvironment. Distinct immune infiltrates can either impair the metastatic process or conversely, assist in the seeding, colonization and growth of disseminated cancer cells. METHODS: Using in vivo selection approaches, we previously isolated 4T1-derived breast cancer cells that preferentially metastasize to these organs and tissues. In this study, we examined whether the propensity of breast cancer cells to metastasize to the lung, liver or bone is associated with and dependent on distinct patterns of immune cell infiltration. Immunohistocytochemistry and immunohistofluorescence approaches were used to quantify innate immune cell infiltrates within distinct metastases and depletion of Gr1+ (Ly-6C and Ly-6G) or specifically Ly-6G+ cells was performed to functionally interrogate the role of Ly-6G+ infiltrates in promoting metastasis to these organs. RESULTS: We show that T lymphocytes (CD3+), myeloid-derived (Gr-1+) cells and neutrophils (Ly-6G+ or NE+) exhibit the most pronounced recruitment in lung and liver metastases, with markedly less recruitment within bone metastatic lesions. Interestingly, these infiltrating cell populations display different patterns of localization within soft tissue metastases. T lymphocytes and granulocytic immune infiltrates are localized around the periphery of liver metastases whereas they were dispersed throughout the lung metastases. Furthermore, Gr-1+ cell-depletion studies demonstrate that infiltrating myeloid-derived cells are essential for the formation of breast cancer liver metastases but dispensable for metastasis to the lung and bone. A specific role for the granulocytic component of the innate immune infiltrate was revealed through Ly-6G+ cell-depletion experiments, which resulted in significantly impaired formation of liver metastases. Finally, we demonstrate that the CD11b+/Ly-6G+ neutrophils that infiltrate and surround the liver metastases are polarized toward an N2 phenotype, which have previously been shown to enhance tumor growth and metastasis. CONCLUSIONS: Our results demonstrate that the liver-metastatic potential of breast cancer cells is heavily reliant on interactions with infiltrating Ly-6G+ cells within the liver microenvironment.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/pathology , Granulocytes/immunology , Granulocytes/pathology , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Biomarkers , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Chemokines/genetics , Chemokines/metabolism , Cluster Analysis , Disease Progression , Female , Gene Expression Profiling/methods , Granulocytes/metabolism , Humans , Immunohistochemistry , Immunophenotyping , Liver Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Neutrophil Infiltration/immunology , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcriptome , Tumor Microenvironment/immunology
20.
J Cell Sci ; 126(Pt 9): 1981-91, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23447672

ABSTRACT

Transforming growth factor ß (TGFß) is a potent modifier of the malignant phenotype in ErbB2-expressing breast cancers. We demonstrate that epithelial-derived breast cancer cells, which undergo a TGFß-induced epithelial-to-mesenchymal transition (EMT), engage signaling molecules that normally facilitate cellular migration and invasion of mesenchymal cells. We identify lipoma preferred partner (LPP) as an indispensable regulator of TGFß-induced migration and invasion of ErbB2-expressing breast cancer cells. We show that LPP re-localizes to focal adhesion complexes upon TGFß stimulation and is a critical determinant in TGFß-mediated focal adhesion turnover. Finally, we have determined that the interaction between LPP and α-actinin, an actin cross-linking protein, is necessary for TGFß-induced migration and invasion of ErbB2-expressing breast cancer cells. Thus, our data reveal that LPP, which is normally operative in cells of mesenchymal origin, can be co-opted by breast cancer cells during an EMT to promote their migration and invasion.


Subject(s)
Actinin/metabolism , Breast Neoplasms/metabolism , Cell Movement , Cytoskeletal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , LIM Domain Proteins/metabolism , Mammary Neoplasms, Experimental/metabolism , Multiprotein Complexes/metabolism , Receptor, ErbB-2/biosynthesis , Transforming Growth Factor beta/metabolism , Actinin/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cytoskeletal Proteins/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Humans , LIM Domain Proteins/genetics , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Multiprotein Complexes/genetics , Neoplasm Invasiveness , Receptor, ErbB-2/genetics , Transforming Growth Factor beta/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL