Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862028

ABSTRACT

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, Axiom and Polaris. The SOMA resource represents a more than tenfold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome datasets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific mouse datasets. Leveraging the datasets, tools and resources in SOMA can help to accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation and countermeasure data for upcoming lunar, Mars and exploration-class missions.

2.
Biogerontology ; 25(2): 313-327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581556

ABSTRACT

Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective "caps" at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the "end-replication problem" first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.


Subject(s)
Aging , Telomere , Humans , Aging/genetics , Cellular Senescence , Longevity/genetics , Planets , Twin Studies as Topic
3.
Sci China Life Sci ; 67(6): 1292-1301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489008

ABSTRACT

Antimicrobial resistance (AMR) poses a critical threat to global health and development, with environmental factors-particularly in urban areas-contributing significantly to the spread of antibiotic resistance genes (ARGs). However, most research to date has been conducted at a local level, leaving significant gaps in our understanding of the global status of antibiotic resistance in urban environments. To address this issue, we thoroughly analyzed a total of 86,213 ARGs detected within 4,728 metagenome samples, which were collected by the MetaSUB International Consortium involving diverse urban environments in 60 cities of 27 countries, utilizing a deep-learning based methodology. Our findings demonstrated the strong geographical specificity of urban environmental resistome, and their correlation with various local socioeconomic and medical conditions. We also identified distinctive evolutionary patterns of ARG-related biosynthetic gene clusters (BGCs) across different countries, and discovered that the urban environment represents a rich source of novel antibiotics. Our study provides a comprehensive overview of the global urban environmental resistome, and fills a significant gap in our knowledge of large-scale urban antibiotic resistome analysis.


Subject(s)
Anti-Bacterial Agents , Cities , Humans , Anti-Bacterial Agents/pharmacology , Socioeconomic Factors , Metagenome/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Multigene Family , Global Health
4.
Nat Microbiol ; 9(7): 1661-1675, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862604

ABSTRACT

Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution human microbiome response to three days in orbit for four individuals. Using paired metagenomics and metatranscriptomics alongside single-nuclei immune cell profiling, we characterized time-dependent, multikingdom microbiome changes across 750 samples and 10 body sites before, during and after spaceflight at eight timepoints. We found that most alterations were transient across body sites; for example, viruses increased in skin sites mostly during flight. However, longer-term shifts were observed in the oral microbiome, including increased plaque-associated bacteria (for example, Fusobacteriota), which correlated with immune cell gene expression. Further, microbial genes associated with phage activity, toxin-antitoxin systems and stress response were enriched across multiple body sites. In total, this study reveals in-depth characterization of microbiome and immune response shifts experienced by astronauts during short-term spaceflight and the associated changes to the living environment, which can help guide future missions, spacecraft design and space habitat planning.


Subject(s)
Astronauts , Bacteria , Metagenomics , Microbiota , Space Flight , Humans , Longitudinal Studies , Microbiota/immunology , Bacteria/classification , Bacteria/genetics , Bacteria/immunology , Male , Gene Expression Profiling , Adult , Middle Aged , Female , Transcriptome , Multiomics
5.
Cancer Discov ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073085

ABSTRACT

Iron accumulation in tumors contributes to disease progression and chemoresistance. While targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells towards an immunostimulatory state characterized by production of type I interferon (IFN) and overexpression of molecules that activate natural killer (NK) cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T cell-centric modalities.

SELECTION OF CITATIONS
SEARCH DETAIL