Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 41(10): 2616-2628, 2021 10.
Article in English | MEDLINE | ID: mdl-34407635

ABSTRACT

Objective: Familial hypercholesterolemia (FH) is traditionally defined as a monogenic disease characterized by severely elevated LDL-C (low-density lipoprotein cholesterol) levels. In practice, FH is commonly a clinical diagnosis without confirmation of a causative mutation. In this study, we sought to characterize and compare monogenic and clinically defined FH in a large sample of Icelanders. Approach and Results: We whole-genome sequenced 49 962 Icelanders and imputed the identified variants into an overall sample of 166 281 chip-genotyped Icelanders. We identified 20 FH mutations in LDLR, APOB, and PCSK9 with combined prevalence of 1 in 836. Monogenic FH was associated with severely elevated LDL-C levels and increased risk of premature coronary disease, aortic valve stenosis, and high burden of coronary atherosclerosis. We used a modified version of the Dutch Lipid Clinic Network criteria to screen for the clinical FH phenotype among living adult participants (N=79 058). Clinical FH was found in 2.2% of participants, of whom only 5.2% had monogenic FH. Mutation-negative clinical FH has a strong polygenic basis. Both individuals with monogenic FH and individuals with mutation-negative clinical FH were markedly undertreated with cholesterol-lowering medications and only a minority attained an LDL-C target of <2.6 mmol/L (<100 mg/dL; 11.0% and 24.9%, respectively) or <1.8 mmol/L (<70 mg/dL; 0.0% and 5.2%, respectively), as recommended for primary prevention by European Society of Cardiology/European Atherosclerosis Society cholesterol guidelines. Conclusions: Clinically defined FH is a relatively common phenotype that is explained by monogenic FH in only a minority of cases. Both monogenic and clinical FH confer high cardiovascular risk but are markedly undertreated.


Subject(s)
Apolipoprotein B-100/genetics , Cardiovascular Diseases/genetics , Hyperlipoproteinemia Type II/genetics , Lipids/blood , Mutation , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/therapy , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/ethnology , Iceland/epidemiology , Male , Middle Aged , Phenotype , Prevalence , Prognosis , Risk Assessment , Risk Factors , Young Adult
2.
Eur Heart J ; 41(28): 2618-2628, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32702746

ABSTRACT

AIMS: To explore whether variability in dietary cholesterol and phytosterol absorption impacts the risk of coronary artery disease (CAD) using as instruments sequence variants in the ABCG5/8 genes, key regulators of intestinal absorption of dietary sterols. METHODS AND RESULTS: We examined the effects of ABCG5/8 variants on non-high-density lipoprotein (non-HDL) cholesterol (N up to 610 532) and phytosterol levels (N = 3039) and the risk of CAD in Iceland, Denmark, and the UK Biobank (105 490 cases and 844 025 controls). We used genetic scores for non-HDL cholesterol to determine whether ABCG5/8 variants confer greater risk of CAD than predicted by their effect on non-HDL cholesterol. We identified nine rare ABCG5/8 coding variants with substantial impact on non-HDL cholesterol. Carriers have elevated phytosterol levels and are at increased risk of CAD. Consistent with impact on ABCG5/8 transporter function in hepatocytes, eight rare ABCG5/8 variants associate with gallstones. A genetic score of ABCG5/8 variants predicting 1 mmol/L increase in non-HDL cholesterol associates with two-fold increase in CAD risk [odds ratio (OR) = 2.01, 95% confidence interval (CI) 1.75-2.31, P = 9.8 × 10-23] compared with a 54% increase in CAD risk (OR = 1.54, 95% CI 1.49-1.59, P = 1.1 × 10-154) associated with a score of other non-HDL cholesterol variants predicting the same increase in non-HDL cholesterol (P for difference in effects = 2.4 × 10-4). CONCLUSIONS: Genetic variation in cholesterol absorption affects levels of circulating non-HDL cholesterol and risk of CAD. Our results indicate that both dietary cholesterol and phytosterols contribute directly to atherogenesis.


Subject(s)
Coronary Artery Disease , Phytosterols , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Humans , Iceland , Sterols
3.
PLoS Genet ; 13(3): e1006659, 2017 03.
Article in English | MEDLINE | ID: mdl-28273074

ABSTRACT

IL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (ß = -0.21 SD, P = 2.5×10-16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10-4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.


Subject(s)
Asthma/genetics , Eosinophils/metabolism , Interleukin-33/genetics , Mutation , Adolescent , Adult , Aged , Aged, 80 and over , Alternative Splicing , Animals , Binding Sites , Biological Assay , Child , Child, Preschool , Denmark , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Iceland , Infant , Infant, Newborn , Introns , Male , Mice , Mice, Transgenic , Middle Aged , Netherlands , Young Adult
4.
Hum Mol Genet ; 26(12): 2364-2376, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28398513

ABSTRACT

Common sequence variants at the haptoglobin gene (HP) have been associated with blood lipid levels. Through whole-genome sequencing of 8,453 Icelanders, we discovered a splice donor founder mutation in HP (NM_001126102.1:c.190 + 1G > C, minor allele frequency = 0.56%). This mutation occurs on the HP1 allele of the common copy number variant in HP and leads to a loss of function of HP1. It associates with lower levels of haptoglobin (P = 2.1 × 10-54), higher levels of non-high density lipoprotein cholesterol (ß = 0.26 mmol/l, P = 2.6 × 10-9) and greater risk of coronary artery disease (odds ratio = 1.30, 95% confidence interval: 1.10-1.54, P = 0.0024). Through haplotype analysis and with RNA sequencing, we provide evidence of a causal relationship between one of the two haptoglobin isoforms, namely Hp1, and lower levels of non-HDL cholesterol. Furthermore, we show that the HP1 allele associates with various other quantitative biological traits.


Subject(s)
Coronary Artery Disease/genetics , Haptoglobins/genetics , Adult , Alleles , Base Sequence , Coronary Artery Disease/metabolism , DNA Copy Number Variations/genetics , Female , Gene Frequency/genetics , Genetic Association Studies/methods , Genetic Variation , Haptoglobins/metabolism , Humans , Iceland , Lipids/blood , Lipids/genetics , Lipoproteins/genetics , Male , Mutation , Odds Ratio , RNA Splice Sites/genetics , Risk Factors
5.
Am J Hum Genet ; 98(5): 898-908, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27132594

ABSTRACT

Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.


Subject(s)
Fertility/genetics , Genetic Variation/genetics , Polycystic Ovary Syndrome/genetics , Twins, Dizygotic/genetics , Anxiety/genetics , Case-Control Studies , Depression/genetics , Family , Female , Follicle Stimulating Hormone/blood , Genome-Wide Association Study , Humans , Longitudinal Studies , Male , Mothers , Polycystic Ovary Syndrome/blood , Pregnancy
6.
N Engl J Med ; 374(22): 2131-41, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27192541

ABSTRACT

BACKGROUND: Several sequence variants are known to have effects on serum levels of non-high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease. METHODS: We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability. RESULTS: We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10(-16)), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10(-6)). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10(-3)). CONCLUSIONS: ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.).


Subject(s)
Asialoglycoprotein Receptor/genetics , Cholesterol/blood , Coronary Artery Disease/genetics , Haploinsufficiency , Adult , Aged , Aged, 80 and over , Base Sequence , Female , Genetic Predisposition to Disease , Humans , Iceland , Kaplan-Meier Estimate , Male , Middle Aged , Molecular Sequence Data , Myocardial Infarction/genetics , Risk , Sequence Analysis, DNA , White People/genetics
7.
Eur Heart J ; 39(23): 2172-2178, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29596577

ABSTRACT

Aims: Scavenger receptor Class B Type 1 (SR-BI) is a major receptor for high-density lipoprotein (HDL) that promotes hepatic uptake of cholesterol from HDL. A rare mutation p.P376L, in the gene encoding SR-BI, SCARB1, was recently reported to associate with elevated HDL cholesterol (HDL-C) and increased risk of coronary artery disease (CAD), suggesting that increased HDL-C caused by SR-BI impairment might be an independent marker of cardiovascular risk. We tested the hypothesis that alleles in or close to SCARB1 that associate with elevated levels of HDL-C also associate with increased risk of CAD in the relatively homogeneous population of Iceland. Methods and results: Using a large resource of whole-genome sequenced Icelanders, we identified thirteen SCARB1 coding mutations that we examined for association with HDL-C (n = 136 672). Three rare SCARB1 mutations, encoding p.G319V, p.V111M, and p.V32M (combined allelic frequency = 0.2%) associate with elevated levels of HDL-C (p.G319V: ß = 11.1 mg/dL, P = 8.0 × 10-7; p.V111M: ß = 8.3 mg/dL, P = 1.1 × 10-6; p.V32M: ß = 10.2 mg/dL, P = 8.1 × 10-4). These mutations do not associate with CAD (36 886 cases/306 268 controls) (odds ratio = 0.90, 95% confidence interval 0.67-1.22, P = 0.49), despite effects on HDL-C comparable to that reported for p.P376L, both in terms of direction and magnitude. Furthermore, HDL-C raising alleles of three common SCARB1 non-coding variants, including one previously unreported (rs61941676-C: ß = 1.25 mg/dL, P = 1.7 × 10-18), and of one low frequency coding variant (p.V135I) that independently associate with higher HDL-C, do not confer increased risk of CAD. Conclusion: Elevated HDL-C due to genetically compromised SR-BI function is not a marker of CAD risk.


Subject(s)
Cholesterol, HDL/metabolism , Coronary Artery Disease/genetics , Scavenger Receptors, Class B/genetics , Humans , Iceland , Liver/metabolism , Mutation
8.
PLoS Genet ; 11(9): e1005379, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26327206

ABSTRACT

Through high coverage whole-genome sequencing and imputation of the identified variants into a large fraction of the Icelandic population, we found four independent signals in the low density lipoprotein receptor gene (LDLR) that associate with levels of non-high density lipoprotein cholesterol (non-HDL-C) and coronary artery disease (CAD). Two signals are novel with respect to association with non-HDL-C and are represented by non-coding low frequency variants (between 2-4% frequency), the splice region variant rs72658867-A in intron 14 and rs17248748-T in intron one. These two novel associations were replicated in three additional populations. Both variants lower non-HDL-C levels (rs72658867-A, non-HDL-C effect = -0.44 mmol/l, Padj = 1.1 × 10⁻8° and rs17248748-T, non-HDL-C effect = -0.13 mmol/l, Padj = 1.3 × 10⁻¹²) and confer protection against CAD (rs72658867-A, OR = 0.76 and Padj = 2.7 × 10⁻8 and rs17248748-T, OR = 0.92 and Padj = 0.022). The LDLR splice region variant, rs72658867-A, located at position +5 in intron 14 (NM_000527:c.2140+5G>A), causes retention of intron 14 during transcription and is expected to produce a truncated LDL receptor lacking domains essential for function of the receptor. About half of the transcripts generated from chromosomes carrying rs72658867-A are characterized by this retention of the intron. The same variant also increases LDLR mRNA expression, however, the wild type transcripts do not exceed levels in non-carriers. This demonstrates that sequence variants that disrupt the LDL receptor can lower non-HDL-C and protect against CAD.


Subject(s)
Cholesterol/blood , Coronary Artery Disease/prevention & control , RNA Splicing , Receptors, LDL/genetics , Humans , RNA, Messenger/genetics
9.
Hum Mol Genet ; 23(25): 6935-43, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25082825

ABSTRACT

Chronic kidney disease (CKD) is a complex disorder with a strong genetic component. A number of common sequence variants have been found to associate with serum creatinine (SCr), estimated glomerular filtration rate (eGFR) and/or CKD. We imputed 24 million single-nucleotide polymorphisms and insertions/deletions identified by whole-genome sequencing of 2230 Icelanders into 81 656 chip-typed individuals and 112 630 relatives of genotyped individuals over the age of 18 with SCr measurements. The large set of sequenced individuals allowed accurate imputation of variants to a minor allele frequency (MAF) of 0.1%. We tested the imputed variants for association with SCr. In addition to replicating established loci, we discovered missense and loss-of-function variants associating with SCr in three solute carriers (SLC6A19, SLC25A45 and SLC47A1) and two E3 ubiquitin ligases (RNF186 and RNF128). All the variants are within coding sequences and all but one are rare (MAF <2%) with SCr effects between 0.085 and 0.129 standard deviations. These rare variants have a larger effect on SCr than previously reported common variants, explaining 0.5% of the variability of SCr in Icelanders in addition to the 1% already accounted for. We tested the five variants associating with SCr for association with CKD in an Icelandic sample of 15 594 cases and 291 428 controls. Three of the variants also associated with CKD. These variants may either affect kidney function or creatinine synthesis and excretion. Of note were four mutations in SLC6A19 that associate with reduced SCr, three of which have been shown to cause Hartnup disease.


Subject(s)
Amino Acid Transport Systems, Neutral/genetics , Creatinine/blood , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Organic Cation Transport Proteins/genetics , Renal Insufficiency, Chronic/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Aged , Alleles , Case-Control Studies , Female , Gene Frequency , Genetic Loci , Genome-Wide Association Study , Genotype , Glomerular Filtration Rate , Humans , INDEL Mutation , Iceland , Male , Middle Aged , Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology
10.
Parasitol Res ; 115(8): 3099-106, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27117162

ABSTRACT

Necropsies of 1010 rock ptarmigans (Lagopus muta) sampled in autumn 2006-2015 in northeast Iceland revealed Mesocestoides canislagopodis tetrathyridia infections in six birds (0.6 %), two juvenile birds (3 month old), and four adult birds (15 months or older). Four birds had tetrathyridia in the body cavity, one bird in the liver, and one bird both in the body cavity and the liver. There were more tetrathyridia in the body cavity of the two juveniles (c. 50 in each) than in three adults (10-40), possibly indicating a host-age-related tetrathyridia mortality. Approximately, half of tetrathyridia in the body cavity were free or loosely attached to the serosa, the other half were encapsulated in a thin, loose connective tissue stroma, frequently attached to the lungs and the liver. Tetrathyridia in the liver parenchyma incited variably intense inflammation. Tetrathyridia from the juvenile hosts were whitish, heart-shaped, and flattened, with unsegmented bodies with a slightly pointed posterior end. In the adult hosts, tetrathyridia were sometimes almost rectangular-shaped, slightly wider compared to those in the juveniles, but more than twice as long as the younger-aged tetrathyridia. Tetrathyridia infections are most likely acquired during the brief insectivorous feeding phase of ptarmigan chicks, and the tetrathyridia persist throughout the lifespan of the birds.


Subject(s)
Bird Diseases/parasitology , Cestode Infections/veterinary , Galliformes/parasitology , Mesocestoides/anatomy & histology , Mesocestoides/pathogenicity , Animals , Iceland , Liver/parasitology , Mesocestoides/classification
11.
Commun Biol ; 5(1): 525, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650273

ABSTRACT

The characteristic lobulated nuclear morphology of granulocytes is partially determined by composition of nuclear envelope proteins. Abnormal nuclear morphology is primarily observed as an increased number of hypolobulated immature neutrophils, called band cells, during infection or in rare envelopathies like Pelger-Huët anomaly. To search for sequence variants affecting nuclear morphology of granulocytes, we performed a genome-wide association study using band neutrophil fraction from 88,101 Icelanders. We describe 13 sequence variants affecting band neutrophil fraction at nine loci. Five of the variants are at the Lamin B receptor (LBR) locus, encoding an inner nuclear membrane protein. Mutations in LBR are linked to Pelger-Huët anomaly. In addition, we identify cosegregation of a rare stop-gain sequence variant in LBR and Pelger Huët anomaly in an Icelandic eight generation pedigree, initially reported in 1963. Two of the other loci include genes which, like LBR, play a role in the nuclear membrane function and integrity. These GWAS results highlight the role proteins of the inner nuclear membrane have as important for neutrophil nuclear morphology.


Subject(s)
Pelger-Huet Anomaly , Genome-Wide Association Study , Granulocytes/metabolism , Humans , Iceland , Neutrophils/metabolism , Pelger-Huet Anomaly/genetics
12.
Circ Genom Precis Med ; 14(1): e003029, 2021 02.
Article in English | MEDLINE | ID: mdl-33315477

ABSTRACT

BACKGROUND: Loss-of-function mutations in the LDL (low-density lipoprotein) receptor gene (LDLR) cause elevated levels of LDL cholesterol and premature cardiovascular disease. To date, a gain-of-function mutation in LDLR with a large effect on LDL cholesterol levels has not been described. Here, we searched for sequence variants in LDLR that have a large effect on LDL cholesterol levels. METHODS: We analyzed whole-genome sequencing data from 43 202 Icelanders. Single-nucleotide polymorphisms and structural variants including deletions, insertions, and duplications were genotyped using whole-genome sequencing-based data. LDL cholesterol associations were carried out in a sample of >100 000 Icelanders with genetic information (imputed or whole-genome sequencing). Molecular analyses were performed using RNA sequencing and protein expression assays in Epstein-Barr virus-transformed lymphocytes. RESULTS: We discovered a 2.5-kb deletion (del2.5) overlapping the 3' untranslated region of LDLR in 7 heterozygous carriers from a single family. Mean level of LDL cholesterol was 74% lower in del2.5 carriers than in 101 851 noncarriers, a difference of 2.48 mmol/L (96 mg/dL; P=8.4×10-8). Del2.5 results in production of an alternative mRNA isoform with a truncated 3' untranslated region. The truncation leads to a loss of target sites for microRNAs known to repress translation of LDLR. In Epstein-Barr virus-transformed lymphocytes derived from del2.5 carriers, expression of alternative mRNA isoform was 1.84-fold higher than the wild-type isoform (P=0.0013), and there was 1.79-fold higher surface expression of the LDL receptor than in noncarriers (P=0.0086). We did not find a highly penetrant detrimental impact of lifelong very low levels of LDL cholesterol due to del2.5 on health of the carriers. CONCLUSIONS: Del2.5 is the first reported gain-of-function mutation in LDLR causing a large reduction in LDL cholesterol. These data point to a role for alternative polyadenylation of LDLR mRNA as a potent regulator of LDL receptor expression in humans.


Subject(s)
Cholesterol, LDL/blood , Receptors, LDL/genetics , 3' Untranslated Regions , Alternative Splicing , Gain of Function Mutation , Gene Deletion , Genetic Vectors/genetics , Genetic Vectors/metabolism , Herpesvirus 4, Human/genetics , Heterozygote , Humans , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/pathology , Iceland , Lymphocytes/cytology , Lymphocytes/metabolism , MicroRNAs/metabolism , Pedigree , Protein Isoforms/genetics , RNA, Messenger/metabolism
13.
Commun Biol ; 4(1): 1132, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580418

ABSTRACT

Platelets play an important role in hemostasis and other aspects of vascular biology. We conducted a meta-analysis of platelet count GWAS using data on 536,974 Europeans and identified 577 independent associations. To search for mechanisms through which these variants affect platelets, we applied cis-expression quantitative trait locus, DEPICT and IPA analyses and assessed genetic sharing between platelet count and various traits using polygenic risk scoring. We found genetic sharing between platelet count and counts of other blood cells (except red blood cells), in addition to several other quantitative traits, including markers of cardiovascular, liver and kidney functions, height, and weight. Platelet count polygenic risk score was predictive of myeloproliferative neoplasms, rheumatoid arthritis, ankylosing spondylitis, hypertension, and benign prostate hyperplasia. Taken together, these results advance understanding of diverse aspects of platelet biology and how they affect biological processes in health and disease.


Subject(s)
Biomarkers/analysis , Genetic Variation , Phenotype , Platelet Count , Quantitative Trait Loci , Female , Humans , Male
14.
Nat Genet ; 53(6): 779-786, 2021 06.
Article in English | MEDLINE | ID: mdl-33972781

ABSTRACT

Long-read sequencing (LRS) promises to improve the characterization of structural variants (SVs). We generated LRS data from 3,622 Icelanders and identified a median of 22,636 SVs per individual (a median of 13,353 insertions and 9,474 deletions). We discovered a set of 133,886 reliably genotyped SV alleles and imputed them into 166,281 individuals to explore their effects on diseases and other traits. We discovered an association of a rare deletion in PCSK9 with lower low-density lipoprotein (LDL) cholesterol levels, compared to the population average. We also discovered an association of a multiallelic SV in ACAN with height; we found 11 alleles that differed in the number of a 57-bp-motif repeat and observed a linear relationship between the number of repeats carried and height. These results show that SVs can be accurately characterized at the population scale using LRS data in a genome-wide non-targeted approach and demonstrate how SVs impact phenotypes.


Subject(s)
Disease/genetics , Genomic Structural Variation , High-Throughput Nucleotide Sequencing , Quantitative Trait, Heritable , Alleles , Cholesterol, LDL/metabolism , Chromosomes, Human/genetics , Female , Gene Frequency/genetics , Humans , Iceland , Linear Models , Male , Proprotein Convertase 9/genetics , Recombination, Genetic/genetics , Sequence Deletion/genetics
15.
Commun Biol ; 4(1): 156, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536631

ABSTRACT

Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N = 246,139), total iron binding capacity (N = 135,430), iron (N = 163,511) and transferrin saturation (N = 131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation.


Subject(s)
Anemia, Iron-Deficiency/genetics , Genetic Loci , Genetic Variation , Iron Overload/genetics , Iron/blood , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/diagnosis , Biomarkers/blood , Denmark , Ferritins/blood , Genome-Wide Association Study , Genotype , Homeostasis , Humans , Iceland , Iron Overload/blood , Iron Overload/diagnosis , Phenotype , Risk Assessment , Risk Factors , Transferrin/metabolism , United Kingdom
16.
JAMA Cardiol ; 5(1): 13-20, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31746962

ABSTRACT

Importance: Genetic studies have evaluated the influence of blood lipid levels on the risk of coronary artery disease (CAD), but less is known about how they are associated with the extent of coronary atherosclerosis. Objective: To estimate the contributions of genetically predicted blood lipid levels on the extent of coronary atherosclerosis. Design, Setting, and Participants: This genetic study included Icelandic adults who had undergone coronary angiography or assessment of coronary artery calcium using cardiac computed tomography. The study incorporates data collected from January 1987 to December 2017 in Iceland in the Swedish Coronary Angiography and Angioplasty Registry and 2 registries of individuals who had undergone percutaneous coronary interventions and coronary artery bypass grafting. For each participant, genetic scores were calculated for levels of non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides, based on reported effect sizes of 345 independent, lipid-associated variants. The genetic scores' predictive ability for lipid levels was assessed in more than 87 000 Icelandic adults. A mendelian randomization approach was used to estimate the contribution of each lipid trait. Exposures: Genetic scores for levels of non-HDL-C, LDL-C, HDL-C, and triglycerides. Main Outcomes and Measures: The extent of angiographic CAD and coronary artery calcium quantity. Results: A total of 12 460 adults (mean [SD] age, 65.1 [10.7] years; 8383 men [67.3%]) underwent coronary angiography, and 4837 had coronary artery calcium assessed by computed tomography. A genetically predicted increase in non-HDL-C levels by 1 SD (38 mg/dL [to convert to millimoles per liter, multiply by 0.0259]) was associated with greater odds of obstructive CAD (odds ratio [OR], 1.83 [95% CI, 1.63-2.07]; P = 2.8 × 10-23). Among patients with obstructive CAD, there were significant associations with multivessel disease (OR, 1.26 [95% CI, 1.11-1.44]; P = 4.1 × 10-4) and 3-vessel disease (OR, 1.47 [95% CI, 1.26-1.72]; P = 9.2 × 10-7). There were also significant associations with the presence of coronary artery calcium (OR, 2.04 [95% CI, 1.70-2.44]; P = 5.3 × 10-15) and loge-transformed coronary artery calcium (effect, 0.70 [95% CI, 0.53-0.87]; P = 1.0 × 10-15). Genetically predicted levels of non-HDL-C remained associated with obstructive CAD and coronary artery calcium extent even after accounting for the association with LDL-C. Genetically predicted levels of HDL-C and triglycerides were associated individually with the extent of coronary atherosclerosis, but not after accounting for the association with non-HDL cholesterol. Conclusions and Relevance: In this study, genetically predicted levels of non-HDL-C were associated with the extent of coronary atherosclerosis as estimated by 2 different methods. The association was stronger than for genetically predicted levels of LDL-C. These findings further support the notion that non-HDL-C may be a better marker of the overall burden of atherogenic lipoproteins than LDL-C.


Subject(s)
Coronary Artery Disease/physiopathology , Hyperlipidemias/genetics , Vascular Calcification/physiopathology , Aged , Causality , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Coronary Angiography , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Coronary Artery Disease/therapy , Female , Genetic Predisposition to Disease , Genotype , Humans , Hyperlipidemias/blood , Hyperlipidemias/epidemiology , Iceland/epidemiology , Logistic Models , Male , Mendelian Randomization Analysis , Middle Aged , Myocardial Revascularization , Severity of Illness Index , Tomography, X-Ray Computed , Triglycerides/blood , Vascular Calcification/epidemiology , Vascular Calcification/genetics
17.
Nat Commun ; 11(1): 393, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959851

ABSTRACT

Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3' UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFßR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis.


Subject(s)
Airway Remodeling/genetics , Asthma/genetics , Ki-1 Antigen/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , T-Lymphocytes/immunology , 3' Untranslated Regions/genetics , Airway Remodeling/immunology , Asthma/immunology , Eosinophils , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Iceland , Ki-1 Antigen/immunology , Ki-1 Antigen/metabolism , Leukocyte Count , MicroRNAs/metabolism , Polymorphism, Single Nucleotide/immunology , Quantitative Trait Loci/immunology , Receptor, Transforming Growth Factor-beta Type I/immunology , Receptor, Transforming Growth Factor-beta Type I/metabolism , United Kingdom
18.
Cancer Epidemiol Biomarkers Prev ; 29(1): 225-235, 2020 01.
Article in English | MEDLINE | ID: mdl-31666285

ABSTRACT

BACKGROUND: Alpha-fetoprotein (AFP), cancer antigens 15.3, 19.9, and 125, carcinoembryonic antigen, and alkaline phosphatase (ALP) are widely measured in attempts to detect cancer and to monitor treatment response. However, due to lack of sensitivity and specificity, their utility is debated. The serum levels of these markers are affected by a number of nonmalignant factors, including genotype. Thus, it may be possible to improve both sensitivity and specificity by adjusting test results for genetic effects. METHODS: We performed genome-wide association studies of serum levels of AFP (N = 22,686), carcinoembryonic antigen (N = 22,309), cancer antigens 15.3 (N = 7,107), 19.9 (N = 9,945), and 125 (N = 9,824), and ALP (N = 162,774). We also examined the correlations between levels of these biomarkers and the presence of cancer, using data from a nationwide cancer registry. RESULTS: We report a total of 84 associations of 79 sequence variants with levels of the six biomarkers, explaining between 2.3% and 42.3% of the phenotypic variance. Among the 79 variants, 22 are cis (in- or near the gene encoding the biomarker), 18 have minor allele frequency less than 1%, 31 are coding variants, and 7 are associated with gene expression in whole blood. We also find multiple conditions associated with higher biomarker levels. CONCLUSIONS: Our results provide insights into the genetic contribution to diversity in concentration of tumor biomarkers in blood. IMPACT: Genetic correction of biomarker values could improve prediction algorithms and decision-making based on these biomarkers.


Subject(s)
Biomarkers, Tumor/blood , Neoplasms/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Child , Child, Preschool , Female , Gene Frequency , Genome-Wide Association Study , Humans , Iceland/epidemiology , Infant , Infant, Newborn , Male , Middle Aged , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/genetics , Polymorphism, Single Nucleotide , Predictive Value of Tests , Reference Values , Registries/statistics & numerical data , Sequence Analysis, RNA , Whole Genome Sequencing , Young Adult
19.
J Am Coll Cardiol ; 74(24): 2982-2994, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31865966

ABSTRACT

BACKGROUND: Lipoprotein(a) [Lp(a)] is a causal risk factor for cardiovascular diseases that has no established therapy. The attribute of Lp(a) that affects cardiovascular risk is not established. Low levels of Lp(a) have been associated with type 2 diabetes (T2D). OBJECTIVES: This study investigated whether cardiovascular risk is conferred by Lp(a) molar concentration or apolipoprotein(a) [apo(a)] size, and whether the relationship between Lp(a) and T2D risk is causal. METHODS: This was a case-control study of 143,087 Icelanders with genetic information, including 17,715 with coronary artery disease (CAD) and 8,734 with T2D. This study used measured and genetically imputed Lp(a) molar concentration, kringle IV type 2 (KIV-2) repeats (which determine apo(a) size), and a splice variant in LPA associated with small apo(a) but low Lp(a) molar concentration to disentangle the relationship between Lp(a) and cardiovascular risk. Loss-of-function homozygotes and other subjects genetically predicted to have low Lp(a) levels were evaluated to assess the relationship between Lp(a) and T2D. RESULTS: Lp(a) molar concentration was associated dose-dependently with CAD risk, peripheral artery disease, aortic valve stenosis, heart failure, and lifespan. Lp(a) molar concentration fully explained the Lp(a) association with CAD, and there was no residual association with apo(a) size. Homozygous carriers of loss-of-function mutations had little or no Lp(a) and increased the risk of T2D. CONCLUSIONS: Molar concentration is the attribute of Lp(a) that affects risk of cardiovascular diseases. Low Lp(a) concentration (bottom 10%) increases T2D risk. Pharmacologic reduction of Lp(a) concentration in the 20% of individuals with the greatest concentration down to the population median is predicted to decrease CAD risk without increasing T2D risk.


Subject(s)
Coronary Artery Disease/blood , DNA Copy Number Variations , Diabetes Mellitus, Type 2/blood , Lipoprotein(a)/blood , Case-Control Studies , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Iceland , Kringles , Lipoprotein(a)/genetics , Mendelian Randomization Analysis , Molecular Weight , Protein Isoforms/blood , Risk Factors
20.
Nat Genet ; 51(2): 267-276, 2019 02.
Article in English | MEDLINE | ID: mdl-30643255

ABSTRACT

Nasal polyps (NP) are lesions on the nasal and paranasal sinus mucosa and are a risk factor for chronic rhinosinusitis (CRS). We performed genome-wide association studies on NP and CRS in Iceland and the UK (using UK Biobank data) with 4,366 NP cases, 5,608 CRS cases, and >700,000 controls. We found 10 markers associated with NP and 2 with CRS. We also tested 210 markers reported to associate with eosinophil count, yielding 17 additional NP associations. Of the 27 NP signals, 7 associate with CRS and 13 with asthma. Most notably, a missense variant in ALOX15 that causes a p.Thr560Met alteration in arachidonate 15-lipoxygenase (15-LO) confers large genome-wide significant protection against NP (P = 8.0 × 10-27, odds ratio = 0.32; 95% confidence interval = 0.26, 0.39) and CRS (P = 1.1 × 10-8, odds ratio = 0.64; 95% confidence interval = 0.55, 0.75). p.Thr560Met, carried by around 1 in 20 Europeans, was previously shown to cause near total loss of 15-LO enzymatic activity. Our findings identify 15-LO as a potential target for therapeutic intervention in NP and CRS.


Subject(s)
Arachidonate 15-Lipoxygenase/genetics , Genetic Variation/genetics , Nasal Polyps/genetics , Sinusitis/genetics , Adult , Asthma/genetics , Chronic Disease , Eosinophils/pathology , Female , Genome-Wide Association Study/methods , Humans , Iceland , Leukocyte Count/methods , Male , Nasal Polyps/pathology , Sinusitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL