Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066550

ABSTRACT

Food fraud, a pervasive issue in the global food industry, poses significant challenges to consumer health, trust, and economic stability, costing an estimated $10-15 billion annually. Therefore, there is a rising demand for developing portable and miniature sensors that facilitate food authentication throughout the supply chain. This review explores the recent advancements and applications of portable and miniature sensors, including portable/miniature near-infrared (NIR) spectroscopy, e-nose and colorimetric sensors based on nanozyme for food authentication within the supply chain. After briefly presenting the architecture and mechanism, this review discusses the application of these portable and miniature sensors in food authentication, addressing the challenges and opportunities in integrating and deploying these sensors to ensure authenticity. This review reveals the enhanced utility of portable/miniature NIR spectroscopy, e-nose, and nanozyme-based colorimetric sensors in ensuring food authenticity and enabling informed decision-making throughout the food supply chain.

2.
Radiographics ; 44(7): e230156, 2024 07.
Article in English | MEDLINE | ID: mdl-38870043

ABSTRACT

Accurate evaluation of the mitral valve (MV) apparatus is essential for understanding the mechanisms of MV disease across various clinical scenarios. The mitral annulus (MA) is a complex and crucial structure that supports MV function; however, conventional imaging techniques have limitations in fully capturing the entirety of the MA. Moreover, recognizing annular changes might aid in identifying patients who may benefit from advanced cardiac imaging and interventions. Multimodality cardiovascular imaging plays a major role in the diagnosis, prognosis, and management of MV disease. Transthoracic echocardiography is the first-line modality for evaluation of the MA, but it has limitations. Cardiac MRI (CMR) has emerged as a robust imaging modality for assessing annular changes, with distinct advantages over other imaging techniques, including accurate flow and volumetric quantification and assessment of variations in the measurements and shape of the MA during the cardiac cycle. Mitral annular disjunction (MAD) is defined as atrial displacement of the hinge point of the MV annulus away from the ventricular myocardium, a condition that is now more frequently diagnosed and studied owing to recent technical advances in cardiac imaging. However, several unresolved issues regarding MAD, such as the functional significance of pathologic disjunction and how this disjunction advances in the clinical course, require further investigation. The authors review the role of CMR in the assessment of MA disease, with a focus on MAD and its functional implications in MV prolapse and mitral regurgitation. ©RSNA, 2024 Supplemental material is available for this article. See the invited commentary by Stojanovska and Fujikura in this issue.


Subject(s)
Magnetic Resonance Imaging , Mitral Valve , Humans , Mitral Valve/diagnostic imaging , Magnetic Resonance Imaging/methods , Mitral Valve Insufficiency/diagnostic imaging , Heart Valve Diseases/diagnostic imaging
3.
Anal Methods ; 16(6): 959, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38287912

ABSTRACT

Correction for 'Low-cost electronic-nose (LC-e-nose) systems for the evaluation of plantation and fruit crops: recent advances and future trends' by Marcus Vinicius da Silva Ferreira et al., Anal. Methods, 2023, https://doi.org/10.1039/D3AY01192E.

4.
J Food Sci ; 89(3): 1540-1553, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343300

ABSTRACT

Bovine bone is an animal-origin matrix rich in type I collagen (COL I) and it necessitates prior demineralization and makes COL I available. This study investigated the ossein-hydroxyapatite physicochemical properties evaluation as a result of processing and solubilization by acids and revealed the bone matrix demineralization and making COL I available. The tibia residue from bovine sources was processed, ground, and transformed into bone matrix powder. The bone matrix was solubilized in acetic acid followed by lactic acid. The bone matrix was evaluated as a result of processing and solubilization by acids: ossein and hydroxyapatite percentages by nitrogen and ash content, mineral content, particle size distribution, Fourier-transformation infrared spectroscopy, x-ray diffraction, and scanning electron microscope. For the obtained residual extracts, pH and mineral content were evaluated. The solubilization by acids affected the ossein-hydroxyapatite physicochemical properties, and the bone matrix solubilized by acetic and lactic acid showed the preservation of the ossein alongside the loss of hydroxyapatite. The processing and the solubilization by acids were revealed to be a  alternative to bone matrix demineralization and enabling the accessibility of bone COL I. PRACTICAL APPLICATION: Bovine bone is an abundant type I collagen source, but processing maneuvers and demineralization effect present limitations due to the rigidity of the structural components. Exploring methodologies to process and demineralize will allow type I collagen to be obtained from the bone source, and direct and amplify the potentialities in the chemical and food industries. The research focused on bone sources and collagen availability holds paramount significance, and promotes repurposing agribusiness residues and development of protein-base products.


Subject(s)
Collagen Type I , Durapatite , Animals , Cattle , Bone Matrix , Collagen/chemistry , Lactic Acid
SELECTION OF CITATIONS
SEARCH DETAIL