Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 26(12): 7154-7166, 2021 12.
Article in English | MEDLINE | ID: mdl-34521994

ABSTRACT

Impaired ability to generate new cells in the adult brain has been linked to deficits in multiple emotional and cognitive behavioral domains. However, the mechanisms by which abrogation of adult neural stem cells (NSCs) impacts on brain function remains controversial. We used a transgenic rat line, the GFAP-Tk, to selectively eliminate NSCs and assess repercussions on different behavioral domains. To assess the functional importance of newborn cells in specific developmental stages, two parallel experimental timeframes were adopted: a short- and a long-term timeline, 1 and 4 weeks after the abrogation protocol, respectively. We conducted in vivo electrophysiology to assess the effects of cytogenesis abrogation on the functional properties of the hippocampus and prefrontal cortex, and on their intercommunication. Adult brain cytogenesis abrogation promoted a time-specific installation of behavioral deficits. While the lack of newborn immature hippocampal neuronal and glial cells elicited a behavioral phenotype restricted to hyperanxiety and cognitive rigidity, specific abrogation of mature new neuronal and glial cells promoted the long-term manifestation of a more complex behavioral profile encompassing alterations in anxiety and hedonic behaviors, along with deficits in multiple cognitive modalities. More so, abrogation of 4 to 7-week-old cells resulted in impaired electrophysiological synchrony of neural theta oscillations between the dorsal hippocampus and the medial prefrontal cortex, which are likely to contribute to the described long-term cognitive alterations. Hence, this work provides insight on how newborn neurons and astrocytes display different functional roles throughout different maturation stages, and establishes common ground to reconcile contrasting results that have marked this field.


Subject(s)
Cognitive Dysfunction , Hippocampus , Neural Stem Cells , Prefrontal Cortex , Animals , Cognition/physiology , Cognitive Dysfunction/pathology , Emotions , Hippocampus/pathology , Neural Stem Cells/pathology , Neurons/pathology , Prefrontal Cortex/pathology , Rats , Rats, Transgenic
2.
Knee Surg Sports Traumatol Arthrosc ; 30(10): 3422-3427, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35338384

ABSTRACT

PURPOSE: The aim of this study was to evaluate the clinical outcome at 5-year follow-up of a one-step procedure combining anterior cruciate ligament (ACL) reconstruction and partial meniscus replacement using a polyurethane scaffold for the treatment of symptomatic patients with previously failed ACL reconstruction and partial medial meniscectomy. Moreover, the implanted scaffolds have been evaluated by MRI protocol in terms of morphology, volume, and signal intensity. METHODS: Twenty patients with symptomatic knee laxity after failed ACL reconstruction and partial medial meniscectomy underwent ACL revision combined with polyurethane-based meniscal scaffold implant. Clinical assessment at 2- and 5-year follow-ups included VAS, Tegner Activity Score, International Knee Documentation Committee (IKDC), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Lysholm Score. MRI evaluation of the scaffold was performed according to the Genovese scale with quantification of the scaffold's volume at 1- and 5-year follow-ups. RESULTS: All scores revealed clinical improvement as compared with the preoperative values at the 2- and 5-year follow-ups. However, a slight, but significant reduction of scores was observed between 2 and 5 years. Concerning the MRI assessment, a significant reduction of the scaffold's volume was observed between 1 and 5 years. Genovese Morphology classification at 5 years included two complete resorptions (Type 3) and all the remaining patients had irregular morphology (Type 2). With regard to the Genovese Signal at the 5-year follow-up, three were classified as markedly hyperintense (Type 1), 15 as slightly hyperintense (Type 2), and two as isointense (Type 1). CONCLUSION: Simultaneous ACL reconstruction and partial meniscus replacement using a polyurethane scaffold provides favourable clinical outcomes in the treatment of symptomatic patients with previously failed ACL reconstruction and partial medial meniscectomy at 5 years. However, MRI evaluation suggests that integration of the scaffold is not consistent. LEVEL OF EVIDENCE: Level IV.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Meniscus , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/adverse effects , Follow-Up Studies , Humans , Lysholm Knee Score , Meniscectomy , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/surgery , Meniscus/surgery , Polyurethanes , Treatment Outcome
3.
Annu Rev Biomed Eng ; 21: 495-521, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30969794

ABSTRACT

The treatment of meniscus injuries has recently been facing a paradigm shift toward the field of tissue engineering, with the aim of regenerating damaged and diseased menisci as opposed to current treatment techniques. This review focuses on the structure and mechanics associated with the meniscus. The meniscus is defined in terms of its biological structure and composition. Biomechanics of the meniscus are discussed in detail, as an understanding of the mechanics is fundamental for the development of new meniscal treatment strategies. Key meniscal characteristics such as biological function, damage (tears), and disease are critically analyzed. The latest technologies behind meniscal repair and regeneration are assessed.


Subject(s)
Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/surgery , Tibial Meniscus Injuries/pathology , Tibial Meniscus Injuries/surgery , Tissue Engineering/methods , Biomechanical Phenomena , Compressive Strength/physiology , Humans , Menisci, Tibial/anatomy & histology , Menisci, Tibial/physiology , Orthopedic Procedures/methods , Orthopedic Procedures/trends , Osteoarthritis, Knee/physiopathology , Regeneration/physiology , Tensile Strength/physiology , Tibial Meniscus Injuries/physiopathology , Tissue Engineering/trends , Tissue Scaffolds
4.
Adv Exp Med Biol ; 1230: 97-119, 2020.
Article in English | MEDLINE | ID: mdl-32285367

ABSTRACT

Angiogenesis is a natural and vital phenomenon of neovascularization that occurs from pre-existing vasculature, being present in many physiological processes, namely in development, reproduction and regeneration. Being a highly dynamic and tightly regulated process, its abnormal expression can be on the basis of several pathologies. For that reason, angiogenesis has been a subject of major interest among the scientific community, being transverse to different areas and founding particular attention in tissue engineering and cancer research fields. Microfluidics has emerged as a powerful tool for modelling this phenomenon, thereby surpassing the limitations associated to conventional angiogenic models. Holding a tremendous flexibility in terms of experimental design towards a specific goal, microfluidic systems can offer an unlimited number of opportunities for investigating angiogenesis in many relevant scenarios, namely from its fundamental comprehension in normal physiological processes to the identification and testing of new therapeutic targets involved on pathological angiogenesis. Additionally, microvascular 3D in vitro models are now opening up new prospects in different fields, being used for investigating and establishing guidelines for the development of next generation of 3D functional vascularized grafts. The promising applications of this emerging technology in angiogenesis studies are herein overviewed, encompassing fundamental and applied research.


Subject(s)
Biomedical Research , Microfluidics , Neovascularization, Pathologic , Neovascularization, Physiologic , Humans , Tissue Engineering
5.
Nanomedicine ; 14(3): 897-908, 2018 04.
Article in English | MEDLINE | ID: mdl-29170112

ABSTRACT

Intervertebral disc (IVD) degeneration is associated with both structural damage and aging related degeneration. Annulus fibrosus (AF) defects such as annular tears, herniation and discectomy require novel tissue engineering strategies to functionally repair AF tissue. An ideal construct will repair the AF by providing physical and biological support, facilitating regeneration. The presented strategy herein proposes a gellan gum-based construct reinforced with cellulose nanocrystals (nCell) as a biological self-gelling AF substitute. Nanocomposite hydrogels were fabricated and characterized with respect to hydrogel swelling capacity, degradation rate in vitro and mechanical properties. Rheological evaluation on the nanocomposites demonstrated the GGMA reinforcement with nCell promoted matrix entanglement with higher scaffold stiffness observed upon ionic crosslinking. Compressive mechanical tests demonstrated compressive modulus values close to those of the human AF tissue. Furthermore, cell culture studies with encapsulated bovine AF cells indicated that nanocomposite constructs promoted cell viability and a physiologically relevant cell morphology for up to fourteen days in vitro.


Subject(s)
Annulus Fibrosus/cytology , Cellulose/chemistry , Guided Tissue Regeneration/methods , Hydrogels/chemistry , Nanoparticles/administration & dosage , Polysaccharides, Bacterial/chemistry , Animals , Annulus Fibrosus/physiology , Cattle , Cell Survival , Nanoparticles/chemistry , Tissue Engineering , Tissue Scaffolds
6.
Adv Exp Med Biol ; 1058: 281-304, 2018.
Article in English | MEDLINE | ID: mdl-29691827

ABSTRACT

Gellan gum (GG) is a widely explored natural polysaccharide that has been gaining attention in tissue engineering (TE) and regenerative medicine field, and more recently in osteochondral TE approaches. Taking advantage of its inherent features such as biocompatibility, biodegradability, similarity with the extracellular matrix and easy functionalization, GG-based hydrogels have been studied for their potential for cartilage and bone tissue regeneration. Several preclinical studies describe the successful outcome of GG in cartilage tissue engineering. By its turn, GG composites have also been proposed in several strategies to guide bone formation. The big challenge in osteochondral TE approaches is still to achieve cartilage and bone regeneration simultaneously through a unique integrated bifunctional construct. The potential of GG to be used as polymeric support to reach both bone and cartilage regeneration has been demonstrated. This chapter provides an overview of GG properties and the functionalization strategies employed to tailor its behaviour to a particular application. The use of GG in soft and hard tissues regeneration approaches, as well in osteochondral integrated TE strategies is also revised.


Subject(s)
Bone Regeneration , Bone and Bones , Cartilage , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Regenerative Medicine/methods , Tissue Engineering/methods , Animals , Bone and Bones/chemistry , Bone and Bones/injuries , Bone and Bones/metabolism , Bone and Bones/pathology , Cartilage/chemistry , Cartilage/injuries , Cartilage/metabolism , Cartilage/pathology , Humans
7.
Adv Exp Med Biol ; 1078: 323-346, 2018.
Article in English | MEDLINE | ID: mdl-30357631

ABSTRACT

The Central Nervous System (CNS) is a highly complex organ that works as the control centre of the body, managing vital and non-vital functions. Neuro-diseases can lead to the degeneration of neural tissue, breakage of the neuronal networks which can affect vital functions and originate cognitive deficits. The complexity of the neural networks, their components and the low regenerative capacity of the CNS are on the basis for the lack of recovery, having the need for therapies that can promote tissue repair and recovery. Most brain processes are mediated through molecules (e.g. cytokines, neurotransmitters) and cells response accordingly and to surrounding cues, either biological or physical, which offers molecule administration and/or cell transplantation a great potential for use in brain recovery. Biomaterials and in particular, of natural-origin are attractive candidates owed to their intrinsic biological cues and biocompatibility and degradability. Through the use of biomaterials, it is possible to protect the cells/molecules from body clearance, enzymatic degradation while maintaining the components in a place of interest. Moreover, by means of combining several components, it is possible to obtain a more targeted and controlled delivery, to image the biomaterial implantation and its degradation over time and tackling simultaneously occurring events (cell death and inflammation) in brain diseases. In this chapter, it is reviewed some brain-affecting diseases and the current developments on tissue engineering approaches for a functional recovery of the brain from those diseases.


Subject(s)
Biocompatible Materials , Brain , Tissue Engineering , Brain Diseases , Central Nervous System , Humans , Neurons
8.
Langmuir ; 32(20): 5173-82, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27138138

ABSTRACT

The microstructure and permeability are crucial factors for the development of hydrogels for tissue engineering, since they influence cell nutrition, penetration, and proliferation. The currently available imaging methods able to characterize hydrogels have many limitations. They often require sample drying and other destructive processing, which can change hydrogel structure, or they have limited imaging penetration depth. In this work, we show for the first time an alternative nondestructive method, based on optical projection tomography (OPT) imaging, to characterize hydrated hydrogels without the need of sample processing. As proof of concept, we used gellan gum (GG) hydrogels obtained by several cross-linking methods. Transmission mode OPT was used to analyze image microtextures, and emission mode OPT to study mass transport. Differences in hydrogel structure related to different types of cross-linking and between modified and native GG were found through the acquired Haralick's image texture features followed by multiple discriminant analysis (MDA). In mass transport studies, the mobility of FITC-dextran (MW 20, 150, 2000 kDa) was analyzed through the macroscopic hydrogel. The FITC-dextran velocities were found to be inversely proportional to the size of the dextran as expected. Furthermore, the threshold size in which the transport is affected by the hydrogel mesh was found to be 150 kDa (Stokes' radii between 69 and 95 Å). On the other hand, the mass transport study allowed us to define an index of homogeneity to assess the cross-linking distribution, structure inside the hydrogel, and repeatability of hydrogel production. As a conclusion, we showed that the set of OPT imaging based material characterization methods presented here are useful for screening many characteristics of hydrogel compositions in relatively short time in an inexpensive manner, providing tools for improving the process of designing hydrogels for tissue engineering and drugs/cells delivery applications.

9.
Eur Spine J ; 23(1): 19-26, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24121748

ABSTRACT

PURPOSE: Regenerative strategies aim to restore the original biofunctionality of the intervertebral disc. Different biomaterials are available, which might support disc regeneration. In the present study, the prospects of success of two hydrogels functionalized with anti-angiogenic peptides and seeded with bone marrow derived mononuclear cells (BMC), respectively, were investigated in an ovine nucleotomy model. METHODS: In a one-step procedure iliac crest aspirates were harvested and, subsequently, separated BMC were seeded on hydrogels and implanted into the ovine disc. For the cell-seeded approach a hyaluronic acid-based hydrogel was used. The anti-angiogenic potential of newly developed VEGF-blockers was investigated on ionically crosslinked metacrylated gellan gum hydrogels. Untreated discs served as nucleotomy controls. 24 adult merino sheep were used. After 6 weeks histological, after 12 weeks histological and biomechanical analyses were conducted. RESULTS: Biomechanical tests revealed no differences between any of the implanted and nucleotomized discs. All implanted discs significantly degenerated compared to intact discs. In contrast, there was no marked difference between implanted and nucleotomized discs. In tendency, albeit not significant, degeneration score and disc height index deteriorated for all but not for the cell-seeded hydrogels from 6 to 12 weeks. Cell-seeded hydrogels slightly decelerated degeneration. CONCLUSIONS: None of the hydrogel configurations was able to regenerate biofunctionality of the intervertebral disc. This might presumably be caused by hydrogel extrusion. Great importance should be given to the development of annulus sealants, which effectively exploit the potential of (cell-seeded) hydrogels for biological disc regeneration and restoration of intervertebral disc functioning.


Subject(s)
Biocompatible Materials/therapeutic use , Hydrogels/therapeutic use , Intervertebral Disc Degeneration/therapy , Intervertebral Disc/physiology , Regeneration/physiology , Adult , Angiogenesis Inhibitors/therapeutic use , Animals , Biomechanical Phenomena , Bone Marrow Transplantation , Diskectomy, Percutaneous , Humans , Hyaluronic Acid/therapeutic use , In Vitro Techniques , Leukocytes, Mononuclear/transplantation , Sheep
10.
Knee Surg Sports Traumatol Arthrosc ; 21(4): 986-94, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23377842

ABSTRACT

PURPOSE: Although bioabsorbable screws promise to degrade within months up to several years after implantation, often this does not happen. In fact, other problems such as screw breakage, tunnel enlargement, allergic or foreign body reactions, cyst or abscess formation, and delayed migration of "biodegradable" screws have been reported. This study aims to provide relevant basic science knowledge and recent insights concerning "biomaterials" currently used in fixation devices for anterior cruciate ligament (ACL) repair. A systematic review on the topic of screw "migration" is provided. METHODS: A PubMed search combining all the key terms was done looking for complications related to late migration of "bioabsorbable" screws used in ACL reconstruction without inferior time limitation up to January 2012. Only clinical reports were included. Reference lists of reports were checked to detect others not identified by the original search. A pre-publication search was performed to identify the most recent relevant articles. RESULTS: A total of ten articles referred to migration of "bioabsorbable" interference screws. Most cases reported on poly-L-lactic acid-based screws. Migration was noticed between 3 and 22 months postoperatively. It was noticed both in the tibia and the femur and with the application of several types of graft. CONCLUSION: Migration is a possible complication of "bioabsorbable" interference screws. The information related to all clinical implications of the so-called "biodegradable screws" remains scarce and probably suffers from the phenomenon of publication bias. The complexity of possible reactions occurring in the human body is difficult to reproduce under controlled laboratory conditions.


Subject(s)
Anterior Cruciate Ligament Reconstruction/instrumentation , Bone Screws/adverse effects , Foreign-Body Migration/etiology , Absorbable Implants , Anterior Cruciate Ligament/surgery , Humans , Lactic Acid , Polyesters , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers
11.
Trends Biotechnol ; 41(12): 1488-1500, 2023 12.
Article in English | MEDLINE | ID: mdl-37544843

ABSTRACT

The fields of tissue bioengineering, -omics, and spatial biology are advancing rapidly, each offering the opportunity for a paradigm shift in breast cancer research. However, to date, collaboration between these fields has not reached its full potential. In this review, we describe the most recently generated 3D breast cancer models regarding the biomaterials and technological platforms employed. Additionally, their biological evaluation is reported, highlighting their advantages and limitations. Specifically, we focus on the most up-to-date -omics and spatial biology techniques, which can generate a deeper understanding of the biological relevance of bioengineered 3D breast cancer in vitro models, thus paving the way towards truly clinically relevant microphysiological systems, improved drug development success rates, and personalised medicine approaches.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Biomedical Engineering , Bioengineering , Biocompatible Materials
12.
Materials (Basel) ; 16(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110008

ABSTRACT

Intervertebral disc (IVD) herniation often causes severe pain and is frequently associated with the degeneration of the IVD. As the IVD degenerates, more fissures with increasing size appear within the outer region of the IVD, the annulus fibrosus (AF), favoring the initiation and progression of IVD herniation. For this reason, we propose an AF repair approach based on methacrylated gellan gum (GG-MA) and silk fibroin. Therefore, coccygeal bovine IVDs were injured using a biopsy puncher (⌀ 2 mm) and then repaired with 2% GG-MA as a filler material and sealed with an embroidered silk yarn fabric. Then, the IVDs were cultured for 14 days either without any load, static loading, or complex dynamic loading. After 14 days of culture, no significant differences were found between the damaged and repaired IVDs, except for a significant decrease in the IVDs' relative height under dynamic loading. Based on our findings combined with the current literature that focuses on ex vivo AF repair approaches, we conclude that it is likely that the repair approach did not fail but rather insufficient harm was done to the IVD.

13.
Adv Biol (Weinh) ; 7(4): e2200141, 2023 04.
Article in English | MEDLINE | ID: mdl-36658719

ABSTRACT

Breast cancer is still the leading cause of women's death due to relapse and metastasis. In vitro tumor models are considered reliable tools for drug screening and understanding cancer-driving mechanisms due to the possibility of mimicking tumor heterogeneity. Herein, a 3D breast cancer model (3D-BCM) is developed based on enzymatically-crosslinked silk fibroin (eSF) hydrogels. Human MCF7 breast cancer cells are encapsulated into eSF hydrogels, with and without human mammary fibroblasts. The spontaneously occurring conformational change from random coil to ß-sheet is correlated with increased eSF hydrogels' stiffness over time. Moreover, mechanical properties analysis confirms that the cells can modify the stiffness of the hydrogels, mimicking the microenvironment stiffening occurring in vivo. Fibroblasts support cancer cells growth and assembly in the eSF hydrogels up to 14 days of culture. Co-cultured 3D-BCM exhibits an upregulated expression of genes related to extracellular matrix remodeling and fibroblast activation. The 3D-BCM is subjected to doxorubicin and paclitaxel treatments, showing differential drug response. Overall, these results suggest that the co-culture of breast cancer cells and fibroblasts in eSF hydrogels allow the development of a mimetic in vitro platform to study cancer progression. This opens up new research avenues to investigate novel molecular targets for anti-cancer therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Coculture Techniques , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoplasm Recurrence, Local , Antineoplastic Agents/pharmacology , Hydrogels , Fibroblasts/pathology , Tumor Microenvironment
14.
Bioengineering (Basel) ; 10(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37106614

ABSTRACT

This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn2+ ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBPshi/shi/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures.

15.
Macromol Biosci ; 22(10): e2200091, 2022 10.
Article in English | MEDLINE | ID: mdl-35853666

ABSTRACT

Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, makes these three dimensional hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein.


Subject(s)
Hydrogels , Tissue Engineering , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Communication , Extracellular Matrix , Hydrogels/chemistry , Tissue Engineering/methods
16.
Biomater Adv ; 133: 112611, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35527137

ABSTRACT

The simultaneous generation of multiple tissues and their functional assembly into complex tissues remains a critical challenge for regenerative medicine. The tissue-to-tissue interface connecting two adjacent tissues is vital in effective tissue function. The presented worked hypothesize that differential functional property can be engineered by modulating the macromolecular composition of a 3D hydrogel construct and distinctively endow stem cell fate. Hence, it was possible to successfully generate macromolecular constructs by using the extracellular matrix (ECM)-based materials; type I collagen (Col I) and hyaluronic acid (HA); and natural-derived biomaterials as methacrylated gellan-gum (GGMA). The 3D hydrogel constructs consisted of two dissimilar layers: 1) Col I: HA hydrogel and 2) GGMA hydrogel. The tissue-to-tissue interface was created by seeding human mesenchymal stem cells (MSCs) between the two layers. Differential functional rheological and mechanical properties characterized the acellular 3D gradient hydrogel constructs. The cell-based 3D hydrogel constructs were assessed for MSCs viability by live/dead staining. Assessing apoptosis by flow cytometry, data showed the feasibility of the 3D hydrogel constructs in maintaining cell viability with no apoptosis induction onto MSCs. A homogeneous distribution was achieved in a successful cellular tissue-to-tissue interface. Human MSCs low proliferative rate and low ECM deposition were seen for all constructs; however, lower proliferative rate within the ECM microenvironment highlights controlled self-renewal of MSCs. The 3D hydrogel constructs maintained the human MSCs phenotype, yet the macromolecular modulation allowed tuning the human MSCs morphology from round to spindle-shaped phenotype. The intrinsic properties of the 3D cell-based hydrogel construct induced differential inflammatory and angiogenic paracrine secretory profiles owing to the dissimilar engineered biophysical milieu. Human MSCs sense the nearby macromolecular environment adjusting the cell-ECM interactions, which influence cell behaviour and fate. Beyond multi-tissue regeneration, the engineered cellular 3D hydrogel constructs may simultaneously address immune regeneration.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Extracellular Matrix , Humans , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Stem Cells , Tissue Engineering
17.
Biomater Adv ; 134: 112575, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35525742

ABSTRACT

The application of nanoparticles in magnetic resonance imaging (MRI) has been greatly increasing, due to their advantageous properties such as nanoscale dimension and tuneability. In this context, manganese (Mn2+)-based nanoparticles have been greatly investigated, due to their valuable use as a contrast agent, improving signal intensity and specificity in MRI (manganese-enhanced MRI, MEMRI). Additionally, Mn2+ can act as scavengers of reactive oxygen species (ROS), commonly present in the inflammatory processes of neurodegenerative diseases. The aim of the present study was to develop nanoreactors, which can be used as contrast-agent in MEMRI. Several blends of methacrylated gellan gum (GG-MA) and hyaluronic acid (HA) were embedded with different types of manganese dioxide (MnO2) nanoparticles and further physico-chemically characterized. Dynamic light scattering, scanning electron microscopy, water uptake and degradation studies were performed. In vitro cytotoxicity of the different formulations was also evaluated using an immortalized rat fibroblast cell line L929, up to 72 h of culturing. Synthesized nanoparticles were obtained with an average size of 70 nm and round-shaped morphology. The stability of the different formulations of hydrogels was not affected by nanoparticles' concentration or HA ratio. The presence of synthesized MnO2 (MnO2_S) nanoparticles reduced hydrogels' cytocompatibility, whereas the commercially available type 1 (MnO2_C1) nanoparticles were less toxic to cells. Additionally, cell proliferation and viability were enhanced when a lower content of HA was present. Higher concentrations (75 and 100 ng/mL) of MnO2_S and MnO2_C1 nanoparticles did not negatively affected cell viability, whereas the opposite effect was observed for the commercial type 2 (MnO2_C2) nanoparticles. Further studies are required to evaluate the potential application of the most promising nanoreactors' formulations for combined application in MEMRI and as ROS scavengers.


Subject(s)
Hydrogels , Manganese Compounds , Animals , Contrast Media , Hyaluronic Acid/chemistry , Hydrogels/pharmacology , Magnetic Resonance Imaging , Manganese/pharmacology , Manganese Compounds/pharmacology , Nanotechnology , Oxides/pharmacology , Rats , Reactive Oxygen Species
18.
ACS Appl Bio Mater ; 4(4): 2941-2956, 2021 04 19.
Article in English | MEDLINE | ID: mdl-35014385

ABSTRACT

This review focuses on vascularization and strategies involved in its evaluation and modulation. Clinical issues associated with engineered tissues of an atomically relevant size that require a vascular network to supply their cells with nutrients and oxygen are analyzed in terms of vascular network formation within scaffolds, which can be produced from varying biomaterials, with the capability of connecting to the vasculature of the patient. Developing angiogenesis techniques and monitoring of angiogenesis development as well as how these methods can be further utilized to tailor vascularization within large tissue engineered constructs are also discussed. Finally, we offer a glimpse toward the future by providing an outlook for vascularization and associated emerging bioprinting concepts in tissue engineering applications.


Subject(s)
Biocompatible Materials/chemistry , Tissue Engineering , Humans , Materials Testing , Neovascularization, Physiologic , Particle Size , Tissue Scaffolds/chemistry
19.
Adv Healthc Mater ; 10(2): e2000753, 2021 01.
Article in English | MEDLINE | ID: mdl-33169544

ABSTRACT

Artificial nerve conduits capable of adequately releasing neurotrophic factors are extensively studied to bridge nerve defects. However, the lack of neurotrophic factors in the proximal area and their visible effects in axonal retrograde transport following nerve injury is one of the factors causing an incomplete nerve regeneration. Herein, an advanced conduit made of silk fibroin is produced, which can incorporate growth factors and promote an effective regeneration after injury. For that, enzymatically crosslinked silk fibroin-based conduits are developed to be used as a platform for the controlled delivery of neurotrophic factors. Nerve growth factor and glial-cell line derived neurotrophic factor (GDNF) are incorporated using two different methodologies: i) crosslinking and ii) absorption method. The release profile is measured by ELISA technique. The bioactivity of the neurotrophic factors is evaluated in vitro by using primary dorsal root ganglia. When implanted in a 10 mm sciatic nerve defect in rats, GDNF-loaded silk fibroin conduits reveal retrograde neuroprotection as compared to autografts and plain silk fibroin conduit. Therefore, the novel design presents a substantial improvement of retrograde trafficking, neurons' protection, and motor nerve reinnervation.


Subject(s)
Fibroins , Peripheral Nerve Injuries , Animals , Ganglia, Spinal , Glial Cell Line-Derived Neurotrophic Factor , Nerve Regeneration , Peripheral Nerve Injuries/therapy , Rats , Sciatic Nerve
20.
ACS Biomater Sci Eng ; 7(10): 4898-4913, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34533303

ABSTRACT

Cell encapsulation strategies using hydrogel beads have been considered as an alternative to immunosuppression in cell-based therapies. They rely on layer-by-layer (LbL) deposition of polymers to tune beads' permeability, creating a physical barrier to the host immune system. However, the LbL approach can also create diffusion barriers, hampering the flow of essential nutrients and therapeutic cell products. In this work, the polyelectrolyte complex (PEC) methodology was used to circumvent the drawbacks of the LbL strategy by inducing hydrogel bead formation through the interaction of anionic methacrylated gellan gum (GG-MA) with cationic poly-l-lysine (PLL). The interfacial complexation between both polymers resulted in beads with a cell-friendly GG-MA hydrogel core surrounded by a PEC semipermeable membrane. The beads showed great in vitro stability over time, a semi-permeable behavior, and supported human adipose-derived stem cell encapsulation. Additionally, and regarding immune recognition, the in vitro and in vivo studies pointed out that the hydrogel beads behave as an immunocompatible system. Overall, the engineered beads showed great potential for hydrogel-mediated cell therapies, when immunoprotection is required, as when treating different metabolic disorders.


Subject(s)
Polylysine , Polysaccharides, Bacterial , Humans , Hydrogels , Polyelectrolytes
SELECTION OF CITATIONS
SEARCH DETAIL