Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33450205

ABSTRACT

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Subject(s)
Antiviral Agents/pharmacology , Immunity/drug effects , Spliceosomes/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Adaptive Immunity/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cytoplasm/drug effects , Cytoplasm/metabolism , Female , Gene Amplification/drug effects , Humans , Introns/genetics , Mice , Molecular Targeted Therapy , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing/drug effects , RNA Splicing/genetics , RNA, Double-Stranded/metabolism , Signal Transduction/drug effects , Spliceosomes/drug effects , Triple Negative Breast Neoplasms/genetics
2.
Genome Res ; 31(1): 146-158, 2021 01.
Article in English | MEDLINE | ID: mdl-33272935

ABSTRACT

As the most complex organ of the human body, the brain is composed of diverse regions, each consisting of distinct cell types and their respective cellular interactions. Human brain development involves a finely tuned cascade of interactive events. These include spatiotemporal gene expression changes and dynamic alterations in cell-type composition. However, our understanding of this process is still largely incomplete owing to the difficulty of brain spatiotemporal transcriptome collection. In this study, we developed a tensor-based approach to impute gene expression on a transcriptome-wide level. After rigorous computational benchmarking, we applied our approach to infer missing data points in the widely used BrainSpan resource and completed the entire grid of spatiotemporal transcriptomics. Next, we conducted deconvolutional analyses to comprehensively characterize major cell-type dynamics across the entire BrainSpan resource to estimate the cellular temporal changes and distinct neocortical areas across development. Moreover, integration of these results with GWAS summary statistics for 13 brain-associated traits revealed multiple novel trait-cell-type associations and trait-spatiotemporal relationships. In summary, our imputed BrainSpan transcriptomic data provide a valuable resource for the research community and our findings help further studies of the transcriptional and cellular dynamics of the human brain and related diseases.


Subject(s)
Brain Diseases , Brain , Gene Expression Profiling , Humans , Phenotype , Transcriptome
3.
Circ Res ; 126(4): 501-516, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31852401

ABSTRACT

RATIONALE: Longitudinal studies are required to distinguish within versus between-individual variation and repeatability of gene expression. They are uniquely positioned to decipher genetic signal from environmental noise, with potential application to gene variant and expression studies. However, longitudinal analyses of gene expression in healthy individuals-especially with regards to alternative splicing-are lacking for most primary cell types, including platelets. OBJECTIVE: To assess repeatability of gene expression and splicing in platelets and use repeatability to identify novel platelet expression quantitative trait loci (QTLs) and splice QTLs. METHODS AND RESULTS: We sequenced the transcriptome of platelets isolated repeatedly up to 4 years from healthy individuals. We examined within and between individual variation and repeatability of platelet RNA expression and exon skipping, a readily measured alternative splicing event. We find that platelet gene expression is generally stable between and within-individuals over time-with the exception of a subset of genes enriched for the inflammation gene ontology. We show an enrichment among repeatable genes for associations with heritable traits, including known and novel platelet expression QTLs. Several exon skipping events were also highly repeatable, suggesting heritable patterns of splicing in platelets. One of the most repeatable was exon 14 skipping of SELP. Accordingly, we identify rs6128 as a platelet splice QTL and define an rs6128-dependent association between SELP exon 14 skipping and race. In vitro experiments demonstrate that this single nucleotide variant directly affects exon 14 skipping and changes the ratio of transmembrane versus soluble P-selectin protein production. CONCLUSIONS: We conclude that the platelet transcriptome is generally stable over 4 years. We demonstrate the use of repeatability of gene expression and splicing to identify novel platelet expression QTLs and splice QTLs. rs6128 is a platelet splice QTL that alters SELP exon 14 skipping and soluble versus transmembrane P-selectin protein production.


Subject(s)
Alternative Splicing , Blood Platelets/metabolism , P-Selectin/genetics , Quantitative Trait Loci/genetics , RNA-Seq/methods , Transcriptome/genetics , Exons/genetics , Gene Ontology , Humans , Polymorphism, Single Nucleotide
4.
Nature ; 525(7569): 384-8, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26331541

ABSTRACT

MYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs. Notably, oncogenic MYC activation has also been shown to increase total RNA and protein production in many tissue and disease contexts. While such increases in RNA and protein production may endow cancer cells with pro-tumour hallmarks, this increase in synthesis may also generate new or heightened burden on MYC-driven cancer cells to process these macromolecules properly. Here we discover that the spliceosome is a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene in human mammary epithelial cells, and demonstrate that BUD31 is a component of the core spliceosome required for its assembly and catalytic activity. Core spliceosomal factors (such as SF3B1 and U2AF1) associated with BUD31 are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total precursor messenger RNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Notably, genetic or pharmacological inhibition of the spliceosome in vivo impairs survival, tumorigenicity and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing, and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Genes, myc/genetics , Spliceosomes/drug effects , Spliceosomes/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Introns/genetics , Mice , Mice, Nude , Neoplasm Metastasis/drug therapy , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Precursors/biosynthesis , RNA Precursors/genetics , RNA Splicing/drug effects , RNA Splicing Factors , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Ribonucleoprotein, U2 Small Nuclear/metabolism , Ribonucleoproteins/metabolism , Splicing Factor U2AF , Xenograft Model Antitumor Assays
5.
Proc Natl Acad Sci U S A ; 114(4): E570-E579, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28069942

ABSTRACT

The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/ß) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.


Subject(s)
Interferons/genetics , Intestine, Small/immunology , Rotavirus Infections/genetics , Animals , Cell Line , Chlorocebus aethiops , Humans , Immunity, Innate , Interferons/immunology , Rotavirus/physiology , Rotavirus Infections/immunology , Sequence Analysis, RNA , Virus Replication
6.
Am J Respir Cell Mol Biol ; 61(1): 31-41, 2019 07.
Article in English | MEDLINE | ID: mdl-30995076

ABSTRACT

Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.


Subject(s)
Lung Diseases/pathology , Lung/pathology , Humans , Lung/metabolism , Transcriptome/genetics
7.
Am J Hum Genet ; 98(5): 883-897, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27132591

ABSTRACT

Platelets play a central role in ischemic cardiovascular events. Cardiovascular disease (CVD) is a major cause of death worldwide. Numerous genome-wide association studies (GWASs) have identified loci associated with CVD risk. However, our understanding of how these variants contribute to disease is limited. Using data from the platelet RNA and expression 1 (PRAX1) study, we analyzed cis expression quantitative trait loci (eQTLs) in platelets from 154 normal human subjects. We confirmed these results in silico by performing allele-specific expression (ASE) analysis, which demonstrated that the allelic directionality of eQTLs and ASE patterns correlate significantly. Comparison of platelet eQTLs with data from the Genotype-Tissue Expression (GTEx) project revealed that a number of platelet eQTLs are platelet specific and that platelet eQTL peaks localize to the gene body at a higher rate than eQTLs from other tissues. Upon integration with data from previously published GWASs, we found that the trait-associated variant rs1474868 coincides with the eQTL peak for mitofusin 2 (MFN2). Additional experimental and computational analyses revealed that this eQTL is linked to an unannotated alternate MFN2 start site preferentially expressed in platelets. Integration of phenotype data from the PRAX1 study showed that MFN2 expression levels were significantly associated with platelet count. This study links the variant rs1474868 to a platelet-specific regulatory role for MFN2 and demonstrates the utility of integrating multi-omic data with eQTL analysis in disease-relevant tissues for interpreting GWAS results.


Subject(s)
Blood Platelets/metabolism , GTP Phosphohydrolases/genetics , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing/methods , Mitochondrial Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , RNA Splice Sites/genetics , Alleles , Computational Biology/methods , Gene Expression Profiling , Genome-Wide Association Study , Genotype , Humans , Phenotype
8.
Blood Cells Mol Dis ; 72: 37-43, 2018 09.
Article in English | MEDLINE | ID: mdl-30055940

ABSTRACT

Variation in platelet response to thrombin may affect the safety and efficacy of PAR antagonism. The Thr120 variant of the common single nucleotide polymorphism (SNP) rs773902 in the protease-activated receptor (PAR) 4 gene is associated with higher platelet aggregation compared to the Ala120 variant. We investigated the relationship between the rs773902 SNP with major bleeding and ischemic events, safety, and efficacy of PAR1 inhibition in 6177 NSTE ACS patients in the TRACER trial. There was a lower rate of GUSTO moderate/severe bleeding in patients with the Thr120 variant. The difference was driven by a lower rate in the smaller homozygous group (recessive model, HR 0.13 [0.02-0.92] P = 0.042). No significant differences were observed in the ischemic outcomes. The excess in bleeding observed with PAR1 inhibition was attenuated in patients with the Thr120 variant, but the interactions were not statistically significant. In summary, lower major bleeding rates were observed in the overall TRACER cohort with the hyperreactive PAR4 Thr120 variant. The increase in bleeding with vorapaxar was attenuated with the Thr120 variant, but we could not demonstrate an interaction with PAR1 inhibition. These findings warrant further exploration, including those of African ancestry where the A allele (Thr120) frequency is ~65%.


Subject(s)
Genetic Variation , Lactones/adverse effects , Pyridines/adverse effects , Randomized Controlled Trials as Topic , Receptors, Thrombin/genetics , Acute Coronary Syndrome , Aged , Female , Genotype , Hemorrhage/chemically induced , Hemorrhage/genetics , Humans , Ischemia , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Polymorphism, Single Nucleotide , Receptor, PAR-1/antagonists & inhibitors
9.
Blood ; 124(23): 3450-8, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25293779

ABSTRACT

Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects. We now show that platelets from blacks (n = 70) express 14% more PAR4 protein than those from whites (n = 84), but this difference is not associated with platelet PAR4 function. Quantitative trait locus analysis identified 3 common single nucleotide polymorphisms in the PAR4 gene (F2RL3) associated with PAR4-induced platelet aggregation. Among these single nucleotide polymorphisms, rs773902 determines whether residue 120 in transmembrane domain 2 is an alanine (Ala) or threonine (Thr). Compared with the Ala120 variant, Thr120 was more common in black subjects than in white subjects (63% vs 19%), was associated with higher PAR4-induced human platelet aggregation and Ca2+ flux, and generated greater inositol 1,4,5-triphosphate in transfected cells. A second, less frequent F2RL3 variant, Phe296Val, was only observed in blacks and abolished the enhanced PAR4-induced platelet aggregation and 1,4,5-triphosphate generation associated with PAR4-Thr120. PAR4 genotype did not affect vorapaxar inhibition of platelet PAR1 function, but a strong pharmacogenetic effect was observed with the PAR4-specific antagonist YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]. These findings may have an important pharmacogenetic effect on the development of new PAR antagonists.


Subject(s)
Blood Platelets/physiology , Platelet Activation/genetics , Platelet Aggregation/genetics , Polymorphism, Single Nucleotide , Racial Groups , Receptors, Thrombin/genetics , Black People/genetics , Blood Platelets/metabolism , Female , Genotype , HEK293 Cells , Humans , Male , Platelet Function Tests , Racial Groups/genetics , Receptors, Thrombin/metabolism , White People/genetics
10.
Blood ; 123(16): e37-45, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24523238

ABSTRACT

There is little data considering relationships among human RNA, demographic variables, and primary human cell physiology. The platelet RNA and expression-1 study measured platelet aggregation to arachidonic acid, ADP, protease-activated receptor (PAR) 1 activation peptide (PAR1-AP), and PAR4-AP, as well as mRNA and microRNA (miRNA) levels in platelets from 84 white and 70 black healthy subjects. A total of 5911 uniquely mapped mRNAs and 181 miRNAs were commonly expressed and validated in a separate cohort. One hundred twenty-nine mRNAs and 15 miRNAs were differentially expressed (DE) by age, and targets of these miRNAs were over-represented among these mRNAs. Fifty-four mRNAs and 9 miRNAs were DE by gender. Networks of miRNAs targeting mRNAs, both DE by age and gender, were identified. The inverse relationship in these RNA pairs suggests miRNAs regulate mRNA levels on aging and between genders. A simple, interactive public web tool (www.plateletomics.com) was developed that permits queries of RNA levels and associations among RNA, platelet aggregation and demographic variables. Access to these data will facilitate discovery of mechanisms of miRNA regulation of gene expression. These results provide new insights into aging and gender, and future platelet RNA association studies must account for age and gender.


Subject(s)
Blood Platelets/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger/genetics , Adolescent , Adult , Age Factors , Female , Genomics/methods , Humans , Male , MicroRNAs/metabolism , Middle Aged , RNA, Messenger/metabolism , Sex Factors , Young Adult
11.
Genes (Basel) ; 15(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38927741

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (Adm), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which Adm influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice. Bulk RNA sequencing of Adm-sufficient (wild-type or Adm+/+) and Adm-haplodeficient (Adm+/-) mice lungs, integrated with single-cell RNA sequencing data, revealed distinct gene expression patterns and cell type alterations associated with Adm deficiency and LPS exposure. Notably, computational integration with cell atlas data revealed that Adm-haplodeficient mouse lungs exhibited gene expression signatures characteristic of increased inflammation, natural killer (NK) cell frequency, and decreased endothelial cell and type II pneumocyte frequency. Furthermore, in silico human BPD patient data analysis supported our cell type frequency finding, highlighting elevated NK cells in BPD infants. These results underscore the protective role of Adm in experimental BPD and emphasize that it is a potential therapeutic target for BPD infants with an inflammatory phenotype.


Subject(s)
Adrenomedullin , Bronchopulmonary Dysplasia , Adrenomedullin/genetics , Adrenomedullin/metabolism , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/pathology , Bronchopulmonary Dysplasia/metabolism , Animals , Mice , Humans , Sequence Analysis, RNA/methods , Disease Models, Animal , Lipopolysaccharides , Lung/metabolism , Lung/pathology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Transcriptome
12.
Nat Commun ; 15(1): 821, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280850

ABSTRACT

Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.


Subject(s)
Cleft Palate , Mice , Animals , Cleft Palate/genetics , Multiomics , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Gene Expression Regulation, Developmental
13.
HGG Adv ; 5(3): 100312, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38796699

ABSTRACT

Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown. Here, we developed DeepFace, a convolutional neural network model, to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson correlation coefficient between the predicted and actual values for 12 epigenetic features achieved a median range of 0.50-0.83. Specifically, our model revealed that SNPs significantly associated with OFCs tended to exhibit higher SAD scores across various variant categories compared to less related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a significant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of risk signals associated with OFCs. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering new perspectives for prioritizing OFC variants using contextualized functional genomic features. We expect DeepFace to be instrumental in accessing and predicting the regulatory roles of variants associated with OFCs, and the model can be extended to study other complex diseases or traits.


Subject(s)
Cleft Lip , Cleft Palate , Deep Learning , Polymorphism, Single Nucleotide , Humans , Cleft Palate/genetics , Cleft Palate/embryology , Cleft Lip/genetics , Cleft Lip/embryology , Neural Networks, Computer , Epigenomics/methods , Embryonic Development/genetics
14.
HGG Adv ; 5(3): 100313, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38807368

ABSTRACT

Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs. Some DNVs are related to known OFC genes or pathways, but there are still many DNVs whose relevance to OFC development is unknown. To explore novel gene functions and their cellular expression profiles, we focused on DNVs in genes that were not listed in OMIM. We collected 960 DNVs in 853 genes from published studies and curated these genes, based on the DNVs' deleteriousness, into 230 and 23 genes related to cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO), respectively. For comparison, we curated 178 CL/P and 277 CPO genes from OMIM. In CL/P, the pathways enriched in DNV and OMIM genes were significantly overlapped (p = 0.002). Single-cell RNA sequencing (scRNA-seq) analysis of mouse lip development revealed that both gene sets had abundant expression in the ectoderm (DNV genes: adjusted p = 0.032, OMIM genes: adjusted p < 0.0002), while only DNV genes were enriched in the endothelium (adjusted p = 0.032). Although we did not achieve significant findings using CPO gene sets, which was mainly due to the limited number of DNV genes, scRNA-seq analysis implicated various expression patterns among DNV and OMIM genes. Our results suggest that combinatory pathway and scRNA-seq data analyses are helpful for contextualizing genes in OFC development.


Subject(s)
Cleft Lip , Cleft Palate , Single-Cell Analysis , Cleft Lip/genetics , Cleft Palate/genetics , Humans , Mice , Animals , Transcriptome , Genetic Variation/genetics , Gene Expression Profiling
15.
bioRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38979371

ABSTRACT

Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate cis- regulatory elements (cCREs) across brain regions. We prioritized seven conservative transcription factors in glial cells in multiple brain regions, including RFX4 in astrocytes and IKZF1 in microglia, which are implicated in regulating sEOAD-associated genes. Moreover, we identified the top 25 altered intercellular signaling between glial cells and neurons, highlighting their regulatory potential on gene expression in receiver cells. We reported 38 cCREs linked to sEOAD-associated genes overlapped with late-onset AD risk loci, and sEOAD cCREs enriched in neuropsychiatric disorder risk loci. This atlas helps dissect transcriptional and chromatin dynamics in sEOAD, providing a key resource for AD research.

16.
Exp Hematol Oncol ; 13(1): 14, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326887

ABSTRACT

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton's tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resistance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.

17.
bioRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38826218

ABSTRACT

Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the let-7 miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis. Using mice and organoid models with genetic ablation of let-7a1/let-7f1/let-7d cluster (let-7afd) in AT2 cells, we demonstrate prevents AT1 differentiation and results in aberrant accumulation of AT2 transitional cells in progressive pulmonary fibrosis. Integration of enhanced AGO2 UV-crosslinking and immunoprecipitation sequencing (AGO2-eCLIP) with RNA-sequencing from AT2 cells uncovered the induction of direct targets of let-7 in an oncogene feed-forward regulatory network including BACH1/EZH2 which drives an aberrant fibrotic cascade. Additional analyses by CUT&RUN-sequencing revealed loss of let-7afd hampers AT1 differentiation by eliciting aberrant histone EZH2 methylation which prevents the exit of AT2 transitional cells into terminal AT1s. This study identifies let-7 as a key gatekeeper of post-transcriptional and epigenetic chromatin signals to prevent AT2-driven pulmonary fibrosis.

18.
Genes (Basel) ; 14(6)2023 06 04.
Article in English | MEDLINE | ID: mdl-37372402

ABSTRACT

Genetic variation in the mitochondrial genome is linked to important biological functions and various human diseases. Recent progress in single-cell genomics has established single-cell RNA sequencing (scRNAseq) as a popular and powerful technique to profile transcriptomics at the cellular level. While most studies focus on deciphering gene expression, polymorphisms including mitochondrial variants can also be readily inferred from scRNAseq. However, limited attention has been paid to investigate the single-cell landscape of mitochondrial variants, despite the rapid accumulation of scRNAseq data in the community. In addition, a diploid context is assumed for most variant calling tools, which is not appropriate for mitochondrial heteroplasmies. Here, we introduce MitoTrace, an R package for the analysis of mitochondrial genetic variation in bulk and scRNAseq data. We applied MitoTrace to several publicly accessible data sets and demonstrated its ability to robustly recover genetic variants from scRNAseq data. We also validated the applicability of MitoTrace to scRNAseq data from diverse platforms. Overall, MitoTrace is a powerful and user-friendly tool to investigate mitochondrial variants from scRNAseq data.


Subject(s)
Genomics , Mitochondria , Humans , Mitochondria/genetics , Gene Expression Profiling/methods , Polymorphism, Genetic , Sequence Analysis, RNA/methods
19.
Genomics Proteomics Bioinformatics ; 21(2): 370-384, 2023 04.
Article in English | MEDLINE | ID: mdl-35470070

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex and dynamic cellular mechanisms. However, cell type annotation remains a main challenge as it largely relies on a priori knowledge and manual curation, which is cumbersome and subjective. The increasing number of scRNA-seq datasets, as well as numerous published genetic studies, has motivated us to build a comprehensive human cell type reference atlas.Here, we present decoding Cell type Specificity (deCS), an automatic cell type annotation method augmented by a comprehensive collection of human cell type expression profiles and marker genes. We used deCS to annotate scRNA-seq data from various tissue types and systematically evaluated the annotation accuracy under different conditions, including reference panels, sequencing depth, and feature selection strategies. Our results demonstrate that expanding the references is critical for improving annotation accuracy. Compared to many existing state-of-the-art annotation tools, deCS significantly reduced computation time and increased accuracy. deCS can be integrated into the standard scRNA-seq analytical pipeline to enhance cell type annotation. Finally, we demonstrated the broad utility of deCS to identify trait-cell type associations in 51 human complex traits, providing deep insights into the cellular mechanisms underlying disease pathogenesis. All documents for deCS, including source code, user manual, demo data, and tutorials, are freely available at https://github.com/bsml320/deCS.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Humans , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software
20.
iScience ; 26(9): 107578, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664629

ABSTRACT

Microbial communities reside at the interface between humans and their environment. Whether the microbiome can be leveraged to gain information on human interaction with museum objects is unclear. To investigate this, we selected objects from the Museum für Naturkunde and the Pergamonmuseum in Berlin, Germany, varying in material and size. Using swabs, we collected 126 samples from natural and cultural heritage objects, which were analyzed through 16S rRNA sequencing. By comparing the microbial composition of touched and untouched objects, we identified a microbial signature associated with human skin microbes. Applying this signature to cultural heritage objects, we identified areas with varying degrees of exposure to human contact on the Ishtar gate and Sam'al gate lions. Furthermore, we differentiated objects touched by two different individuals. Our findings demonstrate that the microbiome of museum objects provides insights into the level of human contact, crucial for conservation, heritage science, and potentially provenance research.

SELECTION OF CITATIONS
SEARCH DETAIL